On the Correctness of the Dirichlet Problem for Equations with Hessian Operators
Author(s):
Svetlana Ivanovna Prokof'eva
Ph.D., Associate Professor of the Mathematics Department of the St. Petersburg State University of Architecture and Civil Engineering (SPbGASU).
prokof_1960@mail.ru
Galina Vladimirovna Yakunina
Ph.D., Associate Professor of the Mathematics Department of the St. Petersburg State University of Architecture and Civil Engineering (SPbGASU).
yakuninagalina@yandex.ru
Tatiana Vladimirovna Ryabikova
Ph.D., Head of the Mathematics Department of the St. Petersburg State University of Architecture and Civil Engineering (SPbGASU).
tanya.dovid@gmail.com
Abstract:
The article deals with completely nonlinear partial differential equations of the second order,
called Hessian, i.e. depending only on the second derivative solutions. The importance
of the concept of ellipticity for linear and Hessian differential equations is compared.
The work gives an example of an equation showing that the ellipticity of the operator
is not correct for the solvability of the Dirichlet problem. An alternative set is proposed –
a cone of positive monotonicity of the operator, on which the Dirichlet problem
has a unique solution. It follows from the example that this equation has at least two
different solutions satisfying the ellipticity condition, but one of them is from the cone
and the other is not included in the cone.
Keywords
- ellipticity
- Garding cone
- Hessian equations
- monotone operator
References:
- Prokof’eva S. I., Jakunina G. V. O ponjatii elliptichnosti dlya polnostyu nelineynich differencialnich uravneniy v chastnich proizvodnich vtorogo poryadka [About the concept of ellipticity for fully nonlinear differential partial equations of second order] E. J. Differential Equations and control processes. 2012. №1. 142-145p
- Gilbarg D., Trudinger N. Ellipticheskie differentialnie uravnenia s chastnimi proizvodnimi vtorogo poryadka [Elliptic partial differential equations of second order] Red. A. K. Gushin- Moskow. Nauka Publ., 1989, 464p
- Ivochkina N. M. Opisanie conusov ustoychivosti, porozhdaemich differencialnimi operatorami tipa Monga-Ampera [A description of the stability cones generated by differential operators of Monge-Ampere type] J. Mat. Sb. 122(164). 1983. 265-275p
- Ivochkina N. M. Reshenie zadachi Dirichle dlya nekоtorych uravneniy tipa Monge-Ampera [Solution the Dirichlet problem for some equations of Monga-Ampere type] J. Mat. Sb. T. 128(170). 1985. №3(11). 403-415p
- Ivochkina N. M., Yakunina G. V., Prokof’eva S. I. Conusi Gordinga v sovremennoy teorii polnostyu nelineynich differentialnich uravneniy vtorogo poryadka [The Garding cones in the modern theory of fully nonlinear second order differential equations]J. Problems of Mat. An. 2012. T. 64. 63-80p
- Caffarelly L., Nirenberg L., Spruck J. The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian // Acta Math. 1985. V. 155, P261-301
- Garding L. An inequality for hyperbolic polynomials //J. Math. Mech. 1959. V. 8. 957-965p
- Filimonenkova N. V. O klassicheskoy razreshimosti zadachi Dirichle dlya nevyrozhdennyich m-gessianovskich uravneniy [On the classical solvability of the Dirichlet problem for nondegenerate m-Hessian equations] J. Problems of Mat. An. 2011. T. 60. 89-110p