Features of the Expansion of Multiple Stochastic Stratonovich Integrals Using Walsh and Haar Functions
Author(s):
Konstantin Rybakov
Moscow Aviation Institute (National Research University)
rkoffice@mail.ru
Abstract:
The problem of the root-mean-square convergence for approximations of multiple
stochastic Stratonovich integrals based on the generalized multiple Fourier
series method using Walsh and Haar functions is considered. It is shown that
when they are chosen to expand multiple stochastic integrals, the proof of
the root-mean-square convergence of a subsequence of series partial sums,
which is formed in a way that is quite natural for these functions, does
not require the explicit fulfillment of any additional conditions, except
for the condition of the existence of the multiple stochastic Stratonovich integral.
Keywords
- Haar functions
- integral
- iterated stochastic Stratonovich
- multiple stochastic Stratonovich integral
- series expansion
- Walsh functions
- Wiener process
References:
- Kloeden, P. E., Platen, E. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, 1995
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. Differencialnie Uravnenia i Protsesy Upravlenia, 2023, no. 1, pp. A. 1-A. 947
- Kuznetsov, D. F. A new approach to the series expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity with respect to components of the multidimensional Wiener process. Differencialnie Uravnenia i Protsesy Upravlenia, 2022, no. 2, pp. 83-186
- Kuznetsov, D. F. A new approach to the series expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity with respect to components of the multidimensional Wiener process. II. Differencialnie Uravnenia i Protsesy Upravlenia, 2022, no. 4, pp. 135-194
- Rybakov, K. A. Orthogonal expansion of multiple Ito stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 3, pp. 109-140. (In Russian)
- Rybakov, K. A. Orthogonal expansion of multiple Stratonovich stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 4, pp. 81-115. (In Russian)
- Delgado, R. Multiple Ogawa, Stratonovich and Skorohod anticipating integrals. Stochastic Analysis and Applications, 1998, vol. 16, no. 5, pp. 859-872
- Farre, M., Jolis, M., Utzet, F. Multiple Stratonovich integral and Hu-Meyer formula for Levy processes. The Annals of Probability, 2010, vol. 38, no. 6, pp. 2136-2169
- Kolmogorov, A. N., Fomin, S. V. Elementy teorii funktsiy i funktsional'nogo analiza [Elements of the theory of functions and functional analysis]. Moscow, Nauka Publ., 1976
- Gikhman, I. I., Skorokhod, A. V. Introduction to the Theory of Random Processes. Dover Publ., 1997
- Lapin, S. V., Egupov, N. D. Teoriya matrichnykh operatorov i ee prilozhenie k zadacham avtomaticheskogo upravleniya [Theory of matrix operators and its application to problems of automatic control]. Moscow, BMSTU Publ., 1997
- Rybin, V. V. Modelirovaniye nestatsionarnykh sistem upravleniya tselogo i drobnogo poryadka proyektsionno-setochnym spektral'nym metodom [Modeling of nonstationary integer-order and fractional-order control systems by grid-projection spectral method]. Moscow, MAI Publ., 2013
- Golubov, B., Efimov, A., Skvortsov, V. Walsh series and transforms: Theory and applications. Springer
- Rybakov, K. A. On the orthogonal expansion of the iterated Stratonovich stochastic integrals. Herald of Dagestan State University. Series 1. Natural Sciences, 2022, vol. 35, no. 3, pp. 17-23. (In Russian)