On the Boundedness of Solutions of a Quasilinear System of Ordinary Differential Equations
Author(s):
Ergashboy Mukhamadiev
Doctor of Physical and Mathematical Sciences,Professor,
Professor of the Department of Mathematics,
Vologda State University.
Russia, 160000, Vologda, st. Lenina, 15.
emuhamadiev@rambler.ru
Alizhon Nabidjanovich Naimov
Doctor of Physical and Mathematical Sciences,Professor,
Professor of the Department of Mathematics,
Vologda State University.
Russia, 160000, Vologda, st. Lenina, 15.
naimovan@vogu35.ru
Abstract:
In the paper, the question of the boundedness
of an arbitrary solution of a quasilinear
system of ordinary differential equations
is investigated under boundedness of the
observed values of the solution. The observed
values of the solution are a finite set of scalar
products of the solution with given vectors.
In terms of the properties of the matrix of
coefficients of the system of equations and
the matrix of coefficients of observed values,
theorems on the boundedness of an arbitrary
solution with boundedness of the observed values
are formulated and proved. The novelty of this paper is that
using the method of limit equations, estimates are derived
from which the boundedness or stability follows
an arbitrary solution of a quasilinear system
in terms of boundedness or stability
of the observed values of the solution.
Keywords
- bounded solution
- limit equation method
- observed values
- quasi-linear system of equations
References:
- Hartman P. Obyknovennyye differentsial'nyye uravneniya [Ordinary Differential Equations]. Moscow, Mir Publ., 1970. 720 p
- Krasovsky N. N. Nekotoryye zadachi teorii ustoychivosti dvizheniya [Some problems of the theory of stability of motion]. Moscow: GIFML, 1959. 211 p
- Pliss V. A. Nelokal'nyye problemy teorii kolebaniy [Nonlocal problems of the theory of oscillations]. Moscow, Nauka Publ., 1964. 367 p
- Krasnosel'skii M. A. Operator sdviga po trayektoriyam differentsial'nykh uravneniy [Operator of Translation Along the Trajectories of Differential Equations]. Moscow, Nauka Publ., 1966. 331 p
- Demidovich B. P. Lektsii po matematicheskoy teorii ustoychivosti [Lectures on the Mathematical Theory of Stability]. Moscow, Nauka Publ., 1967. 472 p
- Krasnosel'skii M. A., Zabreiko P. P. Geometricheskiye metody nelineynogo analiza [Geometric methods of non-linear analysis]. Moscow, Nauka Publ., 1975. 512 p
- Naimov A. N. Issledovaniya po teorii krayevykh zadach. Dokt. Diss. [Research on the theory of boundary value problems. Doct. Diss. ], Khujand, 2000, 260 p
- Kostrub I. D. Neravenstva tipa Landau-Adamara dlya gladkikh vektornykh funktsiy i teorema Esklangona dlya nelineynykh differentsial'nykh uravneniy n-go poryadka [Landau-Hadamard type inequalities for smooth vector functions and Esklangon's theorem for non-linear differential equations of the n-th order]. Vestnik~fakul'teta prikl. matem. i mekhaniki, 2010; No. 8: 233-243. (In Russ. )
- Perov A. I., Kostrub I. D. Ob ogranichennykh resheniyakh slabo nelineynykh vektorno-matrichnykh differentsial'nykh uravneniy n-go poryadka [On bounded solutions of weakly nonlinear vector-matrix differential equations of the n-th order]. Sibir. matem. zhurn. , 2016; 57 (4): 830-849. (In Russ. )
- Voronov A. A., Kim D. P., Lokhin V. M. et al. Teoriya avtomaticheskogo upravleniya [Theory of Automatic Control]. Part II. 2nd ed., Moscow, Vysshaya shkola, 1986. 504 p
- Zubov V. I. Lektsii po teorii upravleniya [Lectures on control theory], Lectures on control theory. Tutorial. 2nd ed., St. Petersburg, Publishing house ''Lan'', 2009. 496 p
- Leonov G. A. Vvedeniye v teoriyu upravleniya [Introduction to control theory]. St. Petersburg, Publishing House of St. Petersburg. state university, 2004. 218 p
- Mukhamadiyev E. K teorii ogranichennykh resheniy obyknovennykh differentsial'nykh uravneniy [On the theory of bounded solutions of ordinary differential equations]. Differents. uravneniya, 1974; 10 (4): 635-646. (In Russ. )
- Levitan B. M., Zhikov V. V. Pochti-periodicheskiye funktsii i differentsial'nyye uravneniya [Almost Periodic Functions and Differential Equations]. Moscow, Publishing House of Moscow State University, 1978. 205 p
- Gantmakher F. R. Teoriya matrits [Matrix Theory]. Moscow, Nauka Publ., 1966. 576 p