ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Implicit Finite-difference Schemes for Equations of One-dimensional Hemodynamics

Author(s):

Gerasim Vladimirovich Krivovichev

Doctor of Physical and Mathematical Sciences, Associate Professor of Faculty of Applied Mathematics and Control Processes,
St. Petersburg State University (St. Petersburg State University)

g.krivovichev@spbu.ru

Nikolay Vasil'evich Egorov

Doctor of Physical and Mathematical Sciences, Professor of Faculty of Applied Mathematics and Control Processes,
St. Petersburg State University (St. Petersburg State University)

n.v.egorov@spbu.ru

Abstract:

The paper is devoted to the construction and analysis of implicit finite-difference schemes for a system of one-dimensional equations of hemodynamics. The schemes are based on the use of finite differences, which approximate spatial derivative with the fourth order. The schemes are based on the splitting on physical processes. According to this approach, at one time step, two mechanical processes are considered: the deformation of the vessel filled with fluid and the fluid flow in the deformed vessel. This approach makes it possible to separately consider finite-difference schemes, which approximate governing equations. In the practical implementation of the proposed schemes, they are reduced to systems of linear algebraic equations with pentadiagonal matrices. The stability analysis of constructed schemes is based on the von Neumann method and the principle of frozen coefficients. In the numerical solution of problems with known analytical solutions, it is demonstrated that the schemes lead to numerical solutions with a fourth-order convergence rate. In the computational experiments on simulation of blood flow in model vascular systems, it is demonstrated that the developed schemes make it possible to perform calculations in much less time than well-known explicit finite-difference and finite-volume schemes.

Keywords

References:

  1. Quarteroni A., Manzoni A., Vergara C. The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numerica, 2017; (26): 365-590
  2. Audebert C., Bucur C., Bekheit M., Vibert E., Vignon-Clementel I., Gerbeau J. Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling. Computer Methods in Applied Mechanics and Engineering, 2017; (314): 102-125
  3. Marchandise E., Willemet M., Lacroix V. A numerical hemodynamic tool for predictive vascular surgery. Medical Engineering and Physics, 2009; (31): 131-144
  4. Toro E. F. Brain venous haemodynamics, neurological diseases and mathematical modelling: a review. Applied Mathematics and Computation, 2015; (272): 542-579
  5. Dobroserdova T., Liang F., Panasenko G., Vassilevski Y. Multiscale models of blood flow in the compliant aortic bifurcation. Applied Mathematics Letters, 2019: (93): 98-104
  6. Xiao N., Alastruey J., Figueroa C. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. International Journal for Numerical Methods in Biomedical Engineering, 2014; (30): 203-231
  7. Delestre O., Lagree P. -Y. A 'well-balanced' finite volume scheme for blood flow simulation. International Journal for Numerical Methods in Fluids, 2013; (72): 177-205
  8. Delestre O., Ghigo A. R., Fullana J. -M., Lagree P. -Y. A shallow water with variable pressure model for blood flow simulation. Networks and Heterogeneous Media, 2016; (11), no. 1: 69-87
  9. Ghigo A. R., Delestre O., Fullana J. -M., Lagree P. -Y. Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties. Journal of Computational Physics, 2017; (331): 108-136
  10. Cavallini N., Caleffi V., Coscia V. Finite volume and WENO scheme in one-dimensional vascular system modelling. Computers and Mathematics with Applications, 2008; (56), no. 9: 2382-2397
  11. Huang P. G., Muller L. O. Simulation of one-dimensional blood flow in networks of human vessels using a novel {TVD} scheme. International Journal for Numerical Methods in Biomedical Engineering, 2015; (31), no. 1: e02701
  12. Wang X., Fullana J. -M., Lagree P. -Y. Verification and comparison of four numerical schemes for a {1D} viscoelastic blood flow model. Computer Methods in Biomechanics and Biomedical Engineering, 2015; (18): 1704-1725
  13. Bessems D., Rutten M., van de Vosse F. A wave propagation model of blood flow in large vessels using an approximate velocity profile function. Journal of Fluid Mechanics, 2007; (580): 145-168
  14. Malossi A. C. I., Blanco P. J., Deparis S. A two-level time step technique for the partitioned solution of one-dimensional arterial networks. Computer Methods in Applied Mechanics and Engineering, 2012; (237-240): 212-226
  15. Melicher V., Gajdosik V. A numerical solution of a one-dimensional blood flow model - moving grid approach. Journal of Computational and Applied Mathematics, 2008; (215), no. 2: 512-520
  16. Sherwin S. J., Formaggia L., Peiro J., Franke V. Computational modelling of {1D} blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. International Journal for Numerical Methods in Fluids, 2003; (43): 673-700
  17. Elad D., Katz D., Kimmel E., Einav S. Numerical schemes for unsteady fluid flow through collapsible tubes. Journal of Biomedical Engineering, 1991; (13), no. 1: 10-18
  18. Smith N. P., Pullan A. J., Hunter P. J. An anatomically based model of transient coronary blood flow in the heart. SIAM Journal on Applied Mathematics, 2002; (62): 990-1018
  19. Duanmu Z., Chen W., Gao H., Yang X., Luo X., Hill N. A. A one-dimensional hemodynamic model of the coronary arterial tree. Frontiers in Physiology, 2019; (10): 853
  20. Olufsen M. S., Peskin C. S., Kim W. Y., Pedersen E. M., Nadim A., Larsen J. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of Biomedical Engineering, 2000; (28): 1281-1299
  21. Saito M., Ikenaga Y., Matsukawa M., Watanabe Y., Asada T., Lagree P. -Y. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results. Journal of Biomechanical Engineering, 2011; (133): 121005
  22. Azer K., Peskin C. S. A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile. Cardiovascular Engineering, 2007; (7): 51-73
  23. Diem A. K., Bressloff N. M. VaMpy: A Python package to solve 1D blood flow problems. Journal of Open Research Software, 2017; (5): 17
  24. Huo Y., Kassab G. S. A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. American Journal of Physiology-Heart and Circulatory Physiology, 2007; (292), no. 6: H2623-H2633
  25. Watanabe S. M., Blanco P. J., Feijoo R. A. Mathematical model of blood flow in an anatomically detailed arterial network of the arm. ESAIM: M2AN, 2013; (47), no. 4: 961-985
  26. Carson J., van Loon R. An implicit solver for {1D} arterial network models. International Journal for Numerical Methods in Biomedical Engineering, 2017; (33), no. 7: e2837
  27. Caro C. J., Pedley T. J., Schroter R. C., Seed W. A. The mechanics of the circulation. Cambridge: Cambridge University press, 2012. 527 p
  28. Formaggia L., Lamponi D., Quarteroni A. One-dimensional models for blood flow in arteries. Journal of Engineering Mathematics, 2003; (47): 251-276
  29. Ghigo A. R., Lagree P. -Y., Fullana J. -M. A time-dependent non-{Newtonian} extension of a 1D blood flow model. Journal of Non-Newtonian Fluid Mechanics, 2018; (253): 36-49
  30. Puelz C., Canic S., Riviere B., Rusin C. G. Comparison of reduced models for blood flow using Runge-Kutta discontinuous Galerkin methods. Applied Numerical Mathematics, 2017; (115): 114-141
  31. Krivovichev G. V. Computational analysis of one-dimensional models for simulation of blood flow in vascular networks. Journal of Computational Science, 2022; (62): 101705
  32. Britton J., Xing Y. Well-balanced discontinuous Galerkin methods for the one-dimensional blood flow through arteries model with man-at-eternal-rest and living-man equilibria. Computers and Fluids, 2020; (203): 104493
  33. Sheng W., Zheng Q., Zheng Y. The Riemann problem for a blood flow model in arteries. Communications in Computational Physics, 2020; (27): 227-250
  34. Toro E. F., Siviglia A. Flow in collapsible tubes with discontinuous mechanical properties: Mathematical model and exact solutions. Communications in Computational Physics, 2013; (13): 361-385
  35. Spiller C., Toro E. F., Vazquez-Cendon M. E., Contarino C. On the exact solution of the Riemann problem for blood flow in human veins, including collapse. Applied Mathematics and Computation, 2017; (303): 178-189
  36. Yanenko N. N. Metod drobnyh shagov resheniia mnogomernyh zadach matematicheskoi fiziki [Method of fractional steps for solution of multidimensional problems of mathematical physics]. Novosibirsk, Nauka Publ., 1967. 196 p
  37. Samarskii A. A., Nikolaev E. S. Metody resheniia setochnyh uravnenii [Methods of solution of grid equations]. Moscow, Nauka Publ., 1978. 595 p
  38. Richtmyer R. D., Morton K. W. Difference Methods for Initial-Value Problems. Florida, Krieger Publishing, 1967. 420 p
  39. Samarskii A. A., Gulin A. V. Ustoichivost’ raznostnyh shem [Stability of difference schemes]. Moscow, Nauka Publ., 1973. 415 p
  40. Bakhvalov N. S., Zhidkov N. P., Kobel’kov G. M. Chislennye metody [Numerical methods]. Moscow, Laboratoriia znanii Publ., 2020. 636 p
  41. Boileau E., Nithiarasu P., Blanco P. J., Muller L. O., Fossan F. E., Hellevik L. R., Donders W. ~P., Huberts W., Willemet M., Alastruey J. A benchmark study of numerical schemes for one-dimensional arterial blood flow modeling. International Journal for Numerical Methods in Biomedical Engineering, 2015; (31): 1-33
  42. Magomedov K. M., Kholodov A. S. Setochno-harakteristicheskie metody [Grid-characteristic methods]. Moscow, Urait Publ., 2018. 314 p
  43. Hedstrom G. W. Nonreflecting boundary conditions for nonlinear hyperbolic systems. Journal of Computational Physics, 1979; (30), no. 2: 222-237
  44. Xiu D., Sherwin S. J. Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network. Journal of Computational Physics, 2007; (226), no. 2: 1385-1407
  45. Razavi M. S., Shirani E. Development of a general methods for designing microvascular networks using distribution of wall shear stress. Journal of Biomechanics, 2013; (46): 2303-2309

Full text (pdf)