Integration of Differential Equations by Using Invariants of Discrete Transformation
Author(s):
Zilya Nailevna Khakimova
Mozhaisky Military Space Academy
Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Mathematics
vka@mil.ru
Ajkanush Ashotovna Atojan
Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Mathematics
Mozhaisky Military Space Academy
vka@mil.ru
Abstract:
Ordinary differential equations of the 2nd and 3rd orders with multiplicative right-hand sides of the 2nd and 3rd orders are studied. A method is considered for reducing the order of equations and obtaining exact solutions of differential equations using transformations that are invariants of generators of cyclic transformations discrete groups closed in the classes of differential equations under consideration.
The method of discrete invariants is an alternative to the method of "multiplication" of integrable cases in the class of differential equations under study by using the constructed discrete group of transformations acting in this class of equations.
Examples are given to illustrate the method of discrete invariants.
Keywords
- class of generalized Emden-Fowler equations (GEFE)
- concomitant
- discrete group analysis (DGA)
- discrete group of transformations
- discrete transformation invariant
- exact solution of differential equation
- Ordinary differential equation (ODE)
References:
- Zajcev V. F. Diskretno-gruppovye metody teorii differencial'nyh uravnenij [Discrete-group methods of the theory of differential equations] // VINITI dep. № 5739-82. - 1982. - 130 p. (In Russian)
- Zajcev V. F., Kormilicina T. V. Diskretno-gruppovye metody teorii differencial'nyh uravnenij, ch. 2 [Discrete-group methods of the theory of differential equations, part 2] // VINITI dep. № 3720-85. - 1985. - 152 p. (In Russian)
- Zajcev V. F., Polianin A. D. Spravochnik po nelinejnym differencial'nym uravneniyam. Prilozheniya v mekhanike, tochnye resheniya [Handbook of Nonlinear Differential Equations. Applications in mechanics, exact solutions]. - Moscow, Nauka Publ., 1993. - 464 p. (In Russian)
- Polyanin A. D., Zaytsev V. F. Handbook of Exact Solutions for Ordinary Differential Equations. 2nd Edition. - CRC Press. Boca Raton - London, 2003
- Polyanin A. D., Zaytsev V. F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. - CRC Press. Boca Raton - London, 2018
- Kamke E. Differentialgleichungen Lö sungsmethoden und Lö sungen. - B. G. Teubner, Leipzig, 1977. - 246 p
- Zajcev V. F., Hakimova Z. N. O diskretno-gruppovom analize uravnenija [On discrete group analysis of the equation ] // VINITI dep. № 9030-В86. - 1986. - 31 p. (In Russian)
- Arzhannikova I. Ju., Zajcev V. F., Malyh A. A., Popov V. V. etc. Sovremennyj gruppovoj analiz: metody i prilozhenija. Diskretno-gruppovoj analiz [Modern group analysis: methods and applications. Discrete group analysis. ]. - Leningrad, Preprint LIIA USSR, № 107. - 1989. - 58 p. (In Russian)
- Khakimova Z. N. Integrirovanie diskretnyh invariantov v klasse polinomial'nyh differencial'nyh uravnenij 2-go porjadka [Integration of discrete invariants in the class of polynomial differential equations of the 2nd order] // Trudy Voenno-kosmicheskoj akademii im. A. F. Mozhaiskogo. - St. Petersburg, Proc. of the Mozhaisky Military Space Academy, 2014. - pp. 8-16. (In Russian)
- Zajcev O. V. O diskretnyh simmetrijah i novyh razreshimyh sluchajah v klasse polinomial'nyh differencial'nyh uravnenij [On discrete symmetries and new solvable cases in the class of polynomial differential equations] // Nauka XXI veka: novyj podhod: materialy IX molodezhnoj mezhdunarodnoj nauchno-prakticheskoj konferencii studentov, aspirantov i molodyh uchenyh. - St. Petersburg, Otkrytie Publ., 2014, - pp. 8-16. (In Russian)
- Hakimova Z. N., Zajcev O. V. Klassifikacija novyh razreshimyh sluchaev v klasse polinomial'nyh differencial'nyh uravnenij [Classification of new solvable cases in the class of polynomial differential equations] // Aktual'nye voprosy sovremennoj nauki, №3. - St. Petersburg, 2014. - pp. 3-11. (In Russian)
- Hakimova Z. N., Greshnevikov K. V. O diskretnyh simmetrijah uravnenija svobodnyh nezatuhajushhih kolebanij majatnika [On discrete symmetries of the equation of free undamped oscillations of a pendulum] // Nekotorye aktual'nye problemy sovremennoj matematiki i matematicheskogo obrazovanija: materialy nauchnoj konferencii «Gercenovskie chtenija - 2023». - St. Petersburg, The Herzen St. Pedagogical University of Russia, 2023. - pp. 254-258. (In Russian)
- Hakimova Z. N., Vavilov D. S., Greshnevikov K. V. O gruppah dijedra dlja uravnenija kolebanij majatnika [On dihedral groups for the equation of pendulum oscillations] // Sbornik trudov Mezhdunarodnoj nauchnoj konferencii «Aktual'nye problemy prikladnoj matematiki, informatiki i mehaniki». - Voronezh, 2023. - pp. 130-134. (In Russian)
- Hakimova Z. N. Diskretnye simmetrii mul'tiplikativnogo klassa obyknovennyh differencial'nyh uravnenij 2-go porjadka [Discrete symmetries of the multiplicative class of ordinary differential equations of the 2nd order] // Nekotorye aktual'nye problemy sovremennoj matematiki i matematicheskogo obrazovanija: materialy nauchnoj konferencii «Gercenovskie chtenija - 2024». - St. Petersburg, The Herzen St. Pedagogical University of Russia, 2024. - pp. 243-246. (In Russian)
- Hakimova Z. N., Timofeeva L. N., Atojan A. A. O diskretnoj gruppe 36-go porjadka dlja mul'tiplikativnogo klassa differencial'nyh uravnenij 2-go porjadka [On the 36th order discrete group for the multiplicative class of 2nd order differential equations] // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. - 2024. - № 2 (140). (In Russian)
- Hakimova Z. N. Simmetrii i tochnye reshenija mul'tiplikativnogo klassa differencial'nyh uravnenij s jeksponencial'nymi funkcijami [Symmetries and exact solutions of the multiplicative class of differential equations with exponential functions] // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. - 2024. - № 6 (144). (In Russian)
- Hakimova Z. N. Vybor klassa differencial'nyh uravnenij dlja nahozhdenija novyh razreshimyh sluchaev [Selecting a class of differential equations to find new solvable cases] // Nekotorye aktual'nye problemy sovremennoj matematiki i matematicheskogo obrazovanija: materialy nauchnoj konferencii «Gercenovskie chtenija - 2017». - St. Petersburg, The Herzen St. Pedagogical University of Russia, 2017. - pp. 112-117. (In Russian)
- Demina M. V., Kudrjashov N. A. Special'nye polinomy i racional'nye reshenija ierarhii vtorogo uravnenija Penleve [Special polynomials and rational solutions of the hierarchy of the second Painlevé equation] // Teoreticheskaja i Matematicheskaja Fizika, 2007. - Т. 153, вып. 1. - С. 58-67