ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Synergetic Control of Interorbital Flight

Author(s):

Alexander Vasilyevich Bratishchev

Professor, doctor fiz.-mat. nauk
Professor of Applied Mathematics Department,
Don State Technical University

avbratishchev@spark-mail.ru

Abstract:

The problem of controlling interorbital flight in the spatial case using the first integrals is considered. Three types of synergistic regulators are proposed. It is shown that the thrust decreases exponentially over time. The executable models of the regulators are designed. The influence of the parameter of the aggregated variable on the geometric shape of the transition orbit is numerically considered. The effect of the choice of an aggregated variable on the amount of work and the amount of thrust. The effect of the angle between the initial and final orbits on the work of transition from orbit to orbit.

Keywords

References:

  1. Okhotsimsky D. E. Sikharulidze Yu. G. Osnovy mechaniky kosmicheskogo polyota [Fundamentals of space flight mechanics]. Moscow: Nauka, 1990
  2. Sukhanov A. A. Astrodinamika [Astrodynamics]. Moscow: IKI RAS, 2010
  3. Sovremennoe sostoyanie mechaniki kosmicheskogo polyota [The current state of space flight mechanics]. Series: " Mechanics of Space Flight". Ed. Gurevich Yu. G. M. : Nauka, 1969
  4. Kolesnikov A. A. Sinergeticheskiye metodi upravleniya slodznimi sistemami. Teoriya sistemnogo analiza [Synergetic methods of managing complex systems. Theory of system analysis]. Moscow: KomKniga, 2006
  5. N. A. Zelenina, A. N. Popov Synergetic control of orbital maneuvering processes. Proceedings of the 7th All-Russian Scientific Conference " System Synthesis and Applied Synergetics" (SSPS-2015). - Taganrog: Publishing House of SFU, 2015. [Electronic resource]: https://www.elibrary.ru/item.asp?id=24866581
  6. Duboshin G. N. Nebesnaya mechanika. Osnovnie zadachi i metodi [Celestial mechanics. The main tasks and methods]. Moscow: Nauka, 1975
  7. Bratishchev A. V. Dzivolup A. V. Synergetic control of a material point in a gravitational field. Differencial’nie uravneniya I process upravleniya, 2124, no. 1 (In Russ. ) Available at: http://www.math.spbu.ru/diffjournal/pdf/bratichshev.pdf //
  8. Dabney J., Harman T. Mastering SIMULINK 4. New Jersey 07458 : Prentice Hall, 2001

Full text (pdf)