Hidden Oscillations and Bistability in a System of Van Der Pol Oscillator with Passive Load
Author(s):
Artem A. Tuchin
Yuri Gagarin State Technical University of Saratov,
77 Politechnicheskaya street, Saratov, Russia, 410054
artemtych@gmail.com
Anna V. Kuptsova
Candidate of physical and mathematical sciences, docent
Docent
Yuri Gagarin State Technical University of Saratov,
77 Politechnicheskaya street, Saratov, Russia, 410054
anna.kuptsova@gmail.com
Pavel V. Kuptsov
Doctor of physical and mathematical sciences, docent
Chief Researcher
Kotelnikov Institute of Radio-Engineering and Electronics of Russian
Academy of Sciences, Saratov Branch, 38 Zelenaya str., Saratov 410019, Russia
Professor
Yuri Gagarin State Technical University of Saratov,
77 Politechnicheskaya street, Saratov, Russia, 410054
kupav@mail.ru
Abstract:
This study considers a Van der Pol oscillator with a passive load. It is
demonstrated that this system can exhibit a hidden attractor in the form of a
stable limit cycle. Furthermore, the study identifies and analyses various modes
of bistability in this system, including the coexistence of self-excited and
hidden limit cycles, as well as bistability of two self-excited limit cycles
exhibiting hysteresis behavior.
Keywords
- bifurcation analysis
- fixed point
- hidden attractor
- self-excited attractor
- two-mode van der Pol oscillator
References:
- van der Pol B. On oscillation hysteresis in a triode generator with two degrees of freedom. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1922. Vol. 43. No 256. P. 700-719
- Andronov A. A., Vitt A. A. [Towards a mathematical theory of autoconvulsive systems with two degrees of freedom]. Zhurnal tekhnicheskoj fiziki. 1934. Vol. 4. No 1. P. 122-143 (In Russ)
- Astakhov O. V., Astakhov S. V., Krakhovskaya N. S. и др. The emergence of multistability and chaos in a two-mode van der Pol generator versus different connection types of linear oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2018. Vol. 28. No 6. P. 063118
- Leonov G. A., Kuznetsov N. V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos. 2013. Vol. 23. No 01. P. 1330002
- Kuznetsov N. V. [Hidden oscillation theory and stability of control systems]. Izvestiya RAN. Teoriya i Sistemy upravleniya. 2020. No 5. P. 5-27 (In Russ)
- Dudkowski D., Jafari S., Kapitaniak T. et al. Hidden attractors in dynamical systems. Physics Reports. 2016. Vol. 637. P. 1-50
- Jafari S., Sprott J. C., Nazarimehr F. Recent new examples of hidden attractors. The European Physical Journal Special Topics. 2015. Vol. 224. No 8. P. 1469-1476
- Burkin I. M. [The method of ‘transition to the space of derivatives’. 40 years of evolution. ] Differencialnie Uravnenia i Protsesy Upravlenia. 2015. No 3. P. 51-93 (In Russ)
- Prasad A. Existence of perpetual points in nonlinear dynamical systems and its applications. International Journal of Bifurcation and Chaos. 2015. Vol. 25. No 02. P. 1530005
- Leonov G. A., Kuznetsov N. V., Kiseleva M. A., Mokaev R. N. [Global differential inclusion problems: Kalman and Vyshnegradsky problems, Chua chains]. Differencialnie Uravnenia i Protsesy Upravlenia 2017. No 4. P. 1-52 (In Russ)
- Kuznetsov N. V., Leonov G. A., Mokaev T. N. et al. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dynamics. 2018. Vol. 92. No 2. P. 267-285
- Brezetskyi S., Dudkowski D., Kapitaniak T. Rare and hidden attractors in Van der Pol-Duffing oscillators. The European Physical Journal Special Topics. 2015. Vol. 224. No 8. P. 1459-1467
- Pham V. -T., Vaidyanathan S., Volos C., Kapitaniak T. Nonlinear dynamical systems with self-excited and hidden attractors. Springer, 2018
- Kuznetsov N. V., Mokaev T. N., Kuznetsova O. A., Kudryashova E. V. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension. Nonlinear Dynamics. 2020. Vol. 102. No 2. P. 713-732
- Andrievsky B. R., Kuznetsov N. V., Kudryashova E. V., Kuznetsova O. A. [Torsional buckling wing flutter: mathematical models, investigation and prevention. Review] Differencialnie Uravnenia i Protsesy Upravlenia. 2021. No 4. P. 116-191 (In Russ)
- Paul Asir M., Prasad A., Kuznetsov N. V., Shrimali M. D. Chimera states in a class of hidden oscillatory networks. Nonlinear Dynamics. 2021. Vol. 104. No 2. P. 1645-1655
- Matouk A. E., Abdelhameed T. N., Almutairi D. K. et. al. Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems. Mathematics. 2023. Vol. 11. No 3
- Stankevich N. V., Kuznetsov N. V., Leonov G. A., Chua L. O. Scenario of the Birth of Hidden Attractors in the Chua Circuit. International Journal of Bifurcation and Chaos. 2017. Vol. 27. No 12. P. 1730038
- Danca M. -F., Kuznetsov N. Hidden Strange Nonchaotic Attractors. Mathematics. 2021. Vol. 9. No 6
- Wang N., Zhang G., Kuznetsov N., Bao H. Hidden attractors and multistability in a modified Chua’s circuit. Communications in Nonlinear Science and Numerical Simulation. 2021. Vol. 92. P. 105494
- Kuznetsov N., Mokaev T., Ponomarenko V. et. al. Hidden attractors in Chua circuit: mathematical theory meets physical experiments. Nonlinear Dynamics. 2023. Vol. 111. No 6. P. 5859-5887
- Ermentrout B. Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Software, Environments and Tools, Series Number 14. SIAM, Philadelphia, 2002. P. 204
- Henon M. On the numerical computation of Poincaré maps. Physica D: Nonlinear Phenomena. 1982. Vol. 5. No 2. P. 412-414