ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Hidden Oscillations and Bistability in a System of Van Der Pol Oscillator with Passive Load

Author(s):

Artem A. Tuchin

Yuri Gagarin State Technical University of Saratov,
77 Politechnicheskaya street, Saratov, Russia, 410054

artemtych@gmail.com

Anna V. Kuptsova

Candidate of physical and mathematical sciences, docent
Docent
Yuri Gagarin State Technical University of Saratov,
77 Politechnicheskaya street, Saratov, Russia, 410054

anna.kuptsova@gmail.com

Pavel V. Kuptsov

Doctor of physical and mathematical sciences, docent
Chief Researcher
Kotelnikov Institute of Radio-Engineering and Electronics of Russian
Academy of Sciences, Saratov Branch, 38 Zelenaya str., Saratov 410019, Russia
Professor
Yuri Gagarin State Technical University of Saratov,
77 Politechnicheskaya street, Saratov, Russia, 410054

kupav@mail.ru

Abstract:

This study considers a Van der Pol oscillator with a passive load. It is demonstrated that this system can exhibit a hidden attractor in the form of a stable limit cycle. Furthermore, the study identifies and analyses various modes of bistability in this system, including the coexistence of self-excited and hidden limit cycles, as well as bistability of two self-excited limit cycles exhibiting hysteresis behavior.

Keywords

References:

  1. van der Pol B. On oscillation hysteresis in a triode generator with two degrees of freedom. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1922. Vol. 43. No 256. P. 700-719
  2. Andronov A. A., Vitt A. A. [Towards a mathematical theory of autoconvulsive systems with two degrees of freedom]. Zhurnal tekhnicheskoj fiziki. 1934. Vol. 4. No 1. P. 122-143 (In Russ)
  3. Astakhov O. V., Astakhov S. V., Krakhovskaya N. S. и др. The emergence of multistability and chaos in a two-mode van der Pol generator versus different connection types of linear oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2018. Vol. 28. No 6. P. 063118
  4. Leonov G. A., Kuznetsov N. V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos. 2013. Vol. 23. No 01. P. 1330002
  5. Kuznetsov N. V. [Hidden oscillation theory and stability of control systems]. Izvestiya RAN. Teoriya i Sistemy upravleniya. 2020. No 5. P. 5-27 (In Russ)
  6. Dudkowski D., Jafari S., Kapitaniak T. et al. Hidden attractors in dynamical systems. Physics Reports. 2016. Vol. 637. P. 1-50
  7. Jafari S., Sprott J. C., Nazarimehr F. Recent new examples of hidden attractors. The European Physical Journal Special Topics. 2015. Vol. 224. No 8. P. 1469-1476
  8. Burkin I. M. [The method of ‘transition to the space of derivatives’. 40 years of evolution. ] Differencialnie Uravnenia i Protsesy Upravlenia. 2015. No 3. P. 51-93 (In Russ)
  9. Prasad A. Existence of perpetual points in nonlinear dynamical systems and its applications. International Journal of Bifurcation and Chaos. 2015. Vol. 25. No 02. P. 1530005
  10. Leonov G. A., Kuznetsov N. V., Kiseleva M. A., Mokaev R. N. [Global differential inclusion problems: Kalman and Vyshnegradsky problems, Chua chains]. Differencialnie Uravnenia i Protsesy Upravlenia 2017. No 4. P. 1-52 (In Russ)
  11. Kuznetsov N. V., Leonov G. A., Mokaev T. N. et al. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dynamics. 2018. Vol. 92. No 2. P. 267-285
  12. Brezetskyi S., Dudkowski D., Kapitaniak T. Rare and hidden attractors in Van der Pol-Duffing oscillators. The European Physical Journal Special Topics. 2015. Vol. 224. No 8. P. 1459-1467
  13. Pham V. -T., Vaidyanathan S., Volos C., Kapitaniak T. Nonlinear dynamical systems with self-excited and hidden attractors. Springer, 2018
  14. Kuznetsov N. V., Mokaev T. N., Kuznetsova O. A., Kudryashova E. V. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension. Nonlinear Dynamics. 2020. Vol. 102. No 2. P. 713-732
  15. Andrievsky B. R., Kuznetsov N. V., Kudryashova E. V., Kuznetsova O. A. [Torsional buckling wing flutter: mathematical models, investigation and prevention. Review] Differencialnie Uravnenia i Protsesy Upravlenia. 2021. No 4. P. 116-191 (In Russ)
  16. Paul Asir M., Prasad A., Kuznetsov N. V., Shrimali M. D. Chimera states in a class of hidden oscillatory networks. Nonlinear Dynamics. 2021. Vol. 104. No 2. P. 1645-1655
  17. Matouk A. E., Abdelhameed T. N., Almutairi D. K. et. al. Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems. Mathematics. 2023. Vol. 11. No 3
  18. Stankevich N. V., Kuznetsov N. V., Leonov G. A., Chua L. O. Scenario of the Birth of Hidden Attractors in the Chua Circuit. International Journal of Bifurcation and Chaos. 2017. Vol. 27. No 12. P. 1730038
  19. Danca M. -F., Kuznetsov N. Hidden Strange Nonchaotic Attractors. Mathematics. 2021. Vol. 9. No 6
  20. Wang N., Zhang G., Kuznetsov N., Bao H. Hidden attractors and multistability in a modified Chua’s circuit. Communications in Nonlinear Science and Numerical Simulation. 2021. Vol. 92. P. 105494
  21. Kuznetsov N., Mokaev T., Ponomarenko V. et. al. Hidden attractors in Chua circuit: mathematical theory meets physical experiments. Nonlinear Dynamics. 2023. Vol. 111. No 6. P. 5859-5887
  22. Ermentrout B. Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Software, Environments and Tools, Series Number 14. SIAM, Philadelphia, 2002. P. 204
  23. Henon M. On the numerical computation of Poincaré maps. Physica D: Nonlinear Phenomena. 1982. Vol. 5. No 2. P. 412-414

Full text (pdf)