Скрытые колебания и бистабильность в системе осциллятора ван дер поля с пассивной нагрузкой
Автор(ы):
Артем Александрович Тучин
Аспирант СГТУ имени Гагарина Ю. А., 410054 Саратов, ул. Политехническая, д. 77
artemtych@gmail.com
Анна Викторовна Купцова
Кандидат физико-математических наук, доцент
Доцент СГТУ имени Гагарина Ю. А., 410054 Саратов, ул. Политехническая, д. 77
anna.kuptsova@gmail.com
Павел Владимирович Купцов
Доктор физико-математических наук, доцент
Главный научный сотрудник, Саратовский филиал Института радиотехники и электроники
им. В.А. Котельникова РАН
410019 Саратов, ул. Зеленая, д. 38
Профессор СГТУ имени Гагарина Ю. А., 410054 Саратов, ул. Политехническая, д. 77
kupav@mail.ru
Аннотация:
Рассматривается осциллятор Ван дер Поля с нагрузкой в виде пассивного
контура. Показано что в такой системе может существовать скрытый аттрактор в
виде устойчивого предельного цикла. Выявлены и проанализированы различные режимы
бистабильности в такой системе: сосуществование самовозбуждающегося и скрытого
предельных циклов, а также бистабильность двух самовозбуждающихся предельных циклов,
имеющая характер гистерезиса.
Ключевые слова
- бифуркационный анализ
- двухмодовый осциллятор Ван дер Поля
- неподвижная точка
- самовозбуждающийся аттрактор
- скрытый аттрактор
Ссылки:
- van der Pol B. On oscillation hysteresis in a triode generator with two degrees of freedom // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1922. Т. 43. № 256. С. 700-719
- Андронов А. А., Витт А. А. К математической теории автоколебательных систем с двумя степенями свободы // Журнал технической физики. 1934. Т. 4. № 1. С. 122-143
- Astakhov O. V., Astakhov S. V., Krakhovskaya N. S. и др. The emergence of multistability and chaos in a two-mode van der Pol generator versus different connection types of linear oscillators // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2018. — 06. Т. 28. № 6. С. 063118
- Leonov G. A., Kuznetsov N. V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits // International Journal of Bifurcation and Chaos. 2013. Т. 23. № 01. С. 1330002
- Кузнецов Н. В. Теория скрытых колебаний и устойчивость систем управления // Известия РАН. Теория и Системы управления. 2020. № 5. С. 5-27
- Dudkowski D., Jafari S., Kapitaniak T. и др. Hidden attractors in dynamical systems // Physics Reports. 2016. Т. 637. С. 1-50
- Jafari S., Sprott J. C., Nazarimehr F. Recent new examples of hidden attractors // The European Physical Journal Special Topics. 2015. Т. 224. № 8. С. 1469-1476
- Буркин И. М. Метод " перехода в пространство производных". 40 лет эволюции // Дифференциальные уравнения и процессы управления. 2015. № 3. С. 51-93
- Prasad A. Existence of perpetual points in nonlinear dynamical systems and its applications // International Journal of Bifurcation and Chaos. 2015. Т. 25. № 02. С. 1530005
- Леонов Г. А., Кузнецов Н. В., Киселёва М. А., Мокаев Р. Н. Глобальные задачи дифференциальных включений: проблемы Калмана и Вышнеградского, цепи Чуа // Дифференциальные уравнения и процессы управления. 2017. № 4. С. 1-52
- Kuznetsov N. V., Leonov G. A., Mokaev T. N. и др. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system // Nonlinear Dynamics. 2018. Т. 92. № 2. С. 267-285
- Brezetskyi S., Dudkowski D., Kapitaniak T. Rare and hidden attractors in Van der Pol-Duffing oscillators // The European Physical Journal Special Topics. 2015. Т. 224. № 8. С. 1459-1467
- Pham V. -T., Vaidyanathan S., Volos C., Kapitaniak T. Nonlinear dynamical systems with self-excited and hidden attractors. Springer, 2018. Т. 133
- Kuznetsov N. V., Mokaev T. N., Kuznetsova O. A., Kudryashova E. V. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension // Nonlinear Dynamics. 2020. Т. 102. № 2. С. 713-732
- Андриевский Б. Р., Кузнецов Н. В., Кудряшова Е. В., Кузнецова О. А. Крутильно-изгибный флаттер крыла: математические модели, исследование и предотвращение. Обзор // Дифференциальные уравнения и процессы управления. 2021. № 4. С. 116-191
- Paul Asir M., Prasad A., Kuznetsov N. V., Shrimali M. D. Chimera states in a class of hidden oscillatory networks // Nonlinear Dynamics. 2021. Т. 104. № 2. С. 1645-1655
- Matouk A. E., Abdelhameed T. N., Almutairi D. K. и др. Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems // Mathematics. 2023. Т. 11. № 3
- Stankevich N. V., Kuznetsov N. V., Leonov G. A., Chua L. O. Scenario of the Birth of Hidden Attractors in the Chua Circuit // International Journal of Bifurcation and Chaos. 2017. Т. 27. № 12. С. 1730038
- Danca M. -F., Kuznetsov N. Hidden Strange Nonchaotic Attractors // Mathematics. 2021. Т. 9. № 6
- Wang N., Zhang G., Kuznetsov N., Bao H. Hidden attractors and multistability in a modified Chua’s circuit // Communications in Nonlinear Science and Numerical Simulation. 2021. Т. 92. С. 105494
- Kuznetsov N., Mokaev T., Ponomarenko V. и др. Hidden attractors in Chua circuit: mathematical theory meets physical experiments // Nonlinear Dynamics. 2023. Т. 111. № 6. С. 5859-5887
- Ermentrout B. Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Software, Environments and Tools, Series Number 14. SIAM, Philadelphia, 2002. С. 204. ISBN: 0898715067
- Henon M. On the numerical computation of Poincaré maps // Physica D: Nonlinear Phenomena. 1982. Т. 5. № 2. С. 412-414