Existence Theory for Random Non-convex Differential Inclusion
Автор(ы):
D. S. Palimkar
Department of Mathematics,
Vasantrao Naik College, Nanded
PIN-431603 (M.S.) INDIA
dspalimkar@rediffmail.com
Аннотация:
In this paper, the existence of solution for the random boundary
value problem of second order non-convex ordinary functional differential
inclusion is proved through priori bound method under some monotonicity conditions.
Ссылки:
- B. C. Dhage, Multi-valued condensing random operators and functional random integral inclusions, Opuscula Mathematica, Vol. 31, No. 1, 2011
- B. C. Dhage and S. M. Kang, Functional random boundary value problems of second order differential equations, Pan American Mathematical Journal 15 (4), 2005, 59-72
- B. C. Dhage, S. K. Ntouyas, D. S. Palimkar, On boundary value problems of second order convex and non-convex differential inclusions, Fixed point Theory, Vol. 9 No. 1, 2008, 89-104
- Hu and N. S. Papageorgiou, Hand Book of Multi-valued Analysis Vol. -I, Theory Kluwer Academic Publisher, Dordrechet, Boston, London, 1997
- S. Itoh, Random fixed point theorems with applications to random differential equations in Banach spaces, J. Math. Anal. Appl. 67, 1979, 261-273
- K. Kuratouski, C. Ryll-Nardzeuskii, A general theorem on selectors, Bull. Acad. Pol. Sci. Ser. Math. Sci. Astron. Phys. 13, 1965, 397-403
- A. Lasota and Z. Opial, An application of Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13, 1965, 781-786
- N. S. Papageorgiou, Random Fixed points and random differential inclusions, Intern. J. Math. and Math. Sci. 11(03), 1988, 551-560
- D. S. Palimkar, Existence Theory of Random Differential Equations , International Journal of Scientific and Research Publications, Vol. 2, No. 7, 2012, 1-6
- D. S. Palimkar, Boundary Value Problem of Second Order Differential Inclusion , International Journal of Mathematics Research, Vol. 4, No. 5, 2012, 527-533
- D. S. Palimkar, Existence Theory for Second Order Random Differential Inclusion, International Journal of Advances in Engineering, Science and Technology, Vol. 2, No. 3, 2012, 261-266
- D. S. Palimkar, Existence Theory of Second Order Random Differential Equations, Global Journal of Mathematics and Mathematical Sciences, Vol. 2, No. 1, 2012, 7-15
- D. S. Palimkar, Second Order Random Differential Inclusion, Variorum Multi-Disciplinary e-Research Journal, Vol. 1, No. 3, 2011, 1-16
- D. S. Palimkar, Some Studies in Random Differential Inclusions, Lambert Publication, Germany, 2012