ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Existence of Solutions of Quasilinear Mixed Volterra-fredholm Integrodifferential Equations with Nonlocal Conditions

Автор(ы):

Kamalendra Kumar

Department of Mathematics,
SRMS CET,
Bareilly-243001,
India

kamlendra.14kumar@gmail.com

Rakesh Kumar

Department of Mathematics,
Hindu College,
Moradabad-244 001,
India

rakeshnaini1@gmail.com

Аннотация:

In this paper we establish the existence and uniqueness of mild and classical solutions of quasilinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition in Banach space. The results are established by using the semigroup theory and Banach fixed point theorem.

Ссылки:

  1. D. Bahuguna, Quasilinear integrodifferential equations in Banach spaces, Nonlinear Anal. 24 (1995), 175-183
  2. D. Bahuguna, Regularity solutions to quasilinear integrodifferential equations in Banach spaces, Appl. Anal. 62 (1996), 1-9
  3. K. Balachandran and M. Chandrasekaran, Existence of solution of a delay differential equation with nonlocal condition, Indian J. Pure Appl. Math. 27 (1996), 443-449
  4. K. Balachandran and S. Ilamaran, Existence and uniqueness of mild and strong solutions of a semilinear evolution equation with nonlocal conditions, Indian J. Pure Appl. Math. 25 (1994), 411-418
  5. K. Balachandran and F. P. Samuel, Existence of solutions for quasilinear delay integrodifferential equations with nonlocal conditions, EJDE, 2009 (6) (2009), 1-7
  6. L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505
  7. L. Byszewski, Theorems about the existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal. 40 (1991), 173-180
  8. L. Byszewski, Uniqueness criterion for solution to abstract nonlocal Cauchy problem, J. Appl. Math. Stoch. Anal. 162 (1991), 49-54
  9. M. G. Crandall and P. Souganidis, Convergence of difference approximations of quasilinear evolution equation, Nonlinear Analysis 10 (1986), 425-445
  10. M. B. Dhakne and K. D., Kucche, Existence of mild solution of mixed Volterra-Fredholm functional integrodifferential equation with nonlocal condition, Applied Mathematical Sciences, 5 (8) (2011), 359-366
  11. S. Kato, Nonhomogeneous quasilinear evolution equations in Banach spaces, Nonlinear Anal. 9 (1985), 1061-1071
  12. T. Kato, Quasilinear equations of evolution, with applications to partial differential equations, Lecture Notes in Mathematics 448 (1985), 25-70, Springer-Verlag, New York
  13. H. Oka, Abstract quasilinear Volterra integrodifferential equations, Nonlinear Anal. 28 (1997), 1019-1045
  14. H. Oka and N. Tanaka, Abstract quasilinear integrodifferential equations of hyperbolic type, Nonlinear Anal. 29 (1997), 903-925
  15. A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983
  16. Shengli Xie, Existence of solutions for nonlinear Mixed type integrodifferential functional evolution equations with nonlocal conditions, Abstract and Applied Analysis 2012 (2012), 1-11
  17. K. Yosida, Functional Analysis, Springer (1968)

Полный текст (pdf)