ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Kinematic Navigation of a Mobile Robot to the Maximizer of an Environmental Field without Derivatives Estimation

Автор(ы):

A. S. Matveev

Professor
Department of Mathematics and Mechanics,
Saint Petersburg State University,
Saint Petersburg, Russia

almat1712@yahoo.com

M. C. Hoy

School of Electrical Engineering and Telecommunications,
the University of New South Wales,
Sydney, NSW, Australia

mch.hoy@gmail.com

A. V. Savkin

School of Electrical Engineering and Telecommunications,
the University of New South Wales,
Sydney, NSW, Australia

a.savkin@unsw.edu.au

Аннотация:

We consider a single kinematically controlled mobile robot traveling in a planar region supporting an unknown field distribution. A single sensor provides the distribution value at the current robot location. We present a novel navigation strategy that drives the robot to the location where the field distribution attains its maximum. The proposed control algorithm employs estimation of neither the entire field gradient nor derivative-dependent quantities, like the rate at which the available measurement evolves over time, and is non-demanding with respect to both computation and motion. Its mathematically rigorous analysis and justification are provided. Simulation results confirm the applicability and performance of the proposed guidance approach.

Ссылки:

  1. K. Ahnert and M. Abel. Numerical differentiation of experimental data: local versus global methods. Computer Physics Communications, 177:764-774, 2007
  2. M. E. Alpay and M. H. Shor. Model-based solution techniques for the source localization problem. IEEE Transactions on Control Systems Technology, 8(6):895-904, 2000
  3. K. B. Ariyur and M. Krstic. Real-Time Optimization by Extremum-Seeking Feedback. Wiley-Interscience, Hoboken, NJ, 2003
  4. R. Bachmayer and N. E. Leonard. Vehicle networks for gradient descent in a sampled environment. In Proceedings of the 41st IEEE Conf. on Decision and Control, pages 113-117, Las Vegas, NV, December 2002
  5. D. Baronov and J. Baillieul. Autonomous vehicle control for ascending/descending along a potential field with two applications. In Proceedings of the American Control Conference, pages 678-683, Seattle, WA, June 2008
  6. F. B. Belgacem. Identifiability for the pointwise source detection in Fisher's reaction-diffusion equation. Inverse Problems, 28(6), 2012
  7. E. Biyik and M. Arcak. Gradient climbing in formation via extremum seeking and passivity-based coordination rules. In Proceedings of the 46th IEEE Conf. on Decision and Control, pages 3133-3138, New Orleans, LA, December 2007
  8. E. Burian, D. Yoeger, A. Bradley, and H. Singh. Gradient search with autonomous underwater vehicle using scalar measurements. In Proceedings of the IEEE Symposium on Underwater Vehicle Technology, pages 86-98, Monterey, CA, June 1996
  9. A. G. Butkovskiy and L. M. Pustyl'nikov. Mobile Control of Distributed Parameter Systems. Halsted Press, NY, 1987
  10. R. Chartrand. Numerical differentiation of noisy nonsmooth data. ISRN Appl. Math. , 2011. doi: 10. 5402/2011/164564
  11. V. Christopoulos and S. I. Roumeliotis. Multirobot trajectory generation for single source explosion parameter estimation. In Proceedings of the 2005 IEEE Int. Conf. on Robotics and Automation, pages 2814-2820, Barcelona, Spain, April 2005
  12. J. Cochran and M. Krstic. Nonholonomic source seeking with tuning of angular velocity. IEEE Trans. Autom. Control, 54:717-731, 2009
  13. J. Cortes. Distributed gradient ascent of random fields by robotic sensor networks. In Proceedings of the 46th IEEE Conference on Decision and Control, pages 3120-3126, New Orleans, LA, December 2007
  14. M. A. Demetriou. Power management of sensor networks for detection of a moving source in 2-D spatial domains. In Proceedings of the American Control Conference, pages 1144-1149, Minneapolis, MN, June 2006
  15. M. A. Demetriou. Process estimation and moving source detection in 2-D diffusion processes by scheduling of sensor networks. In Proceedings of the American Control Conference, New York, NY, July 2007
  16. M. A. Demetriou. Centralized and decentralized policies for the containment of moving source in 2-D diffusion processes using sensor/actuator network. In Proceedings of the American Control Conference, pages 127-132, St. Louis, MO, June 2009
  17. Y. Elor and A. M. Bruckstein. Two-robot source seeking with point measurements. Theoretical Computer Sciences, 457:76-85, 2012
  18. V. Gazi and K. M. Passino. Stability analysis of social foraging swarms. IEEE Trans. on Systems, Man, and Cybernetics, 54(1):539-557, 2004
  19. A. Gray. Logarithmic spirals. In Modern Differential Geometry of Curves and Surfaces with Mathematica, pages 40-42. CRC Press, Boca Raton, second edition, 1997
  20. R. Horst and P. M. Pardalos (eds. ). Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht, 1995
  21. W. Jatmiko, F. Jovan, R. Dhiemas, A. M. Sakti, F. M. Ivan, T. Fukuda, and K. Sekiyama. Robots implementation for odor source localization using PSO algorithm. WSEAS Transactions on Circuits and Systems, 10(4):115-125, 2011
  22. A. Khapalov. Source localization and sensor placement in environmental monitoring. International Journal of Applied Mathematics and Computer Science, 20(3):445-458, 2010
  23. H. Lee, V. I. Utkin, and A. Malinin. Chattering reduction using multiphase sliding mode control. International Journal of Control, 82:1720 - 1737, 2009
  24. W. Li, J. A. Farrell, Sh. Pang, and R. M. Arrieta. Moth-inspired chemical plume tracing on an autonomous underwater vehicle. IEEE Transactions on Robotics, 22(2):292-307, 2006
  25. S. Liu and M. Krstic. Stochastic source seeking for nonholonomic unicycle. Automatica, 48(9):1443-1453, 2010
  26. A. S. Matveev, H. Teimoori, and A. V. Savkin. Navigation of a unicycle-like mobile robot for environmental extremum seeking. Automatica, 47(1):85-91, 2011
  27. A. Mesquita, J. Hespanha, and K. Åström. Optimotaxis: a stochastic multi-agent optimization procedure with point measurements. In M. Egersted and B. Mishra, editors, Hybrid Systems: Computation and Control, volume 4981, pages 358-371. Springer-Verlag, Berlin, 2008
  28. P. Ögren, E. Fiorelli, and N. E. Leonard. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Trans. Autom. Control, 49(8):1292-1301, 2004
  29. B. Porat and A. Neohorai. Localizing vapor-emitting sources by moving sensors. IEEE Trans. Signal Processing, 44(4):1018-1021, 1996
  30. P. Pyk, S. Badia, U. Bernardet, P. Knsel, M. Carlsson, J. Gu, E. Chanie, B. Hansson, T. Pearce, and P. Verschure. An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonomous Robots, 20(3):197-213, 2006
  31. I. F. Sivergina, M. P. Polis, and I. Kolmanovsky. Source identification for parabolic equations. Mathematics of Control, Signals, and Systems, 16(16):141-157, 2003
  32. P. Tzanos and M. Žefran. Locating a circular biochemical source: Modeling and control. In Proceedings of the 2007 IEEE Int. Conf. on Robotics and Automation, pages 523-528, Rome, Italy, 2007
  33. L. K. Vasiljevic and H. K. Khalil. Error bounds in differentiation of noisy signals by high-gain observers. Systems & Control Letters, 57:856-862, 2008
  34. R. B. Vinter. Optimal Control. Birkhäuzer, Boston, 2000
  35. C. Zhang, D. Arnold, N. Ghods, A. Siranosian, and M. Krstic. Source seeking with non-holonomic unicycle without position measurement and with tuning of forward velocity. Systems & Control Letters, 56:245-252, 2007

Полный текст (pdf)