ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Existence of Positive Periodic Solutions for Two Types of Third-order Nonlinear Neutral Differential Equations with Variable Coefficients

Автор(ы):

Bouzid Mansouri

Faculty of Sciences,
Department of Mathematics,
University Annaba,
P.O. Box 12, Annaba
23000, Algeria

mansouri.math@yahoo.fr

Abdelouaheb Ardjouni

Faculty of Sciences and Technology,
Department of Mathematics and Informatics,
University Souk Ahras,
P.O. Box 1553, Souk Ahras,
41000, Algeria

abd_ardjouni@yahoo.fr

Ahcene Djoudi

Faculty of Sciences,
Department of Mathematics,
University Annaba,
P.O. Box 12, Annaba
23000, Algeria

Аннотация:

In this work, we study the existence of positive periodic solutions for two types of third-order nonlinear neutral differential equations with variable coefficients. The results are established by using the Krasnoselskii's fixed point theorem. The results obtained here extend the work of Ren, Siegmund and Chen. Two examples are given to illustrate this work.

Ключевые слова

Ссылки:

  1. A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second-order nonlinear neutral differential equation with variable delay, Palestine Journal of Mathematics, Vol. 3(2) (2014), 191-197
  2. A. Ardjouni, A. Djoudi and A. Rezaiguia, Existence of positive periodic solutions for two types of third-order nonlinear neutral differential equations with variable delay, Applied Mathematics E-Notes, 14 (2014), 86-96
  3. A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for a nonlinear neutral differential equations with variable delay, Applied Mathematics E-Notes, 12 (2012), 94-101
  4. A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay, Electronic Journal of Qualitative Theory of Differential Equations, 2012, No. 31, 1-9
  5. A. Ardjouni and A. Djoudi, Periodic solutions for a second-order nonlinear neutral differential equation with variable delay, Electron. J. Differential Equations, Vol. 2011 (2011), No. 128, pp. 1-7
  6. A. Ardjouni and A. Djoudi, Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale, Rend. Sem. Mat. Univ. Politec. Torino Vol. 68, 4(2010), 349-359
  7. C. Avramescu, On a fixed point theorem, Studii si Cercetari Matematice, 9, Tome 22, 2 (1970), pp. 215-220
  8. C. Avramescu and C. Vladimirescu, Some remarks on Krasnoselskii's fixed point theorem, Fixed Point Theory, Volume 4, No. 1, 2003, 3-13
  9. T. A. Burton, Liapunov functionals, fixed points and stability by Krasnoselskii's theorem, Nonlinear Stud. 9 (2002), No. 2, 181-190
  10. T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006
  11. T. Candan, Existence of positive periodic solutions of first-order neutral differential equations, Math. Methods Appl. Sci. 40 (2017), 205-209
  12. T. Candan, Existence of positive periodic solutions of first-order neutral differential equations with variable coefficients, Applied Mathematics Letters 52 (2016), 142-148
  13. F. D. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput. 162 (2005), No. 3, 1279-1302
  14. F. D. Chen and J. L. Shi, Periodicity in a nonlinear predator-prey system with state dependent delays, Acta Math. Appl. Sin. Engl. Ser. 21 (2005), no. 1, 49-60
  15. Z. Cheng and J. Ren, Existence of positive periodic solution for variable coefficient third-order differential equation with singularity, Math. Meth. Appl. Sci. 2014, 37, 2281-2289
  16. Z. Cheng and Y. Xin, Multiplicity Results for variable-coefficient singular third-order differential equation with a parameter, Abstract and Applied Analysis, Vol. 2014, Article ID 527162, 1-10
  17. S. Cheng and G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differential Equations, Vol. 2001 (2001), No. 59, 1-8
  18. H. Deham and A. Djoudi, Periodic solutions for nonlinear differential equation with functional delay, Georgian Mathematical Journal 15 (2008), No. 4, 635-642
  19. H. Deham and A. Djoudi, Existence of periodic solutions for neutral nonlinear differential equations with variable delay, Electronic Journal of Differential Equations, Vol. 2010 (2010), No. 127, pp. 1-8
  20. Y. M. Dib, M. R. Maroun and Y. N. Rafoul, Periodicity and stability in neutral nonlinear differential equations with functional delay, Electronic Journal of Differential Equations, Vol. 2005 (2005), No. 142, pp. 1-11
  21. M. Fan and K. Wang, P. J. Y. Wong and R. P. Agarwal, Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments, Acta Math. Sin. Engl. Ser. 19 (2003), no. 4, 801-822
  22. H. I. Freedman, J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal. 23 (1992) 689-701
  23. M. Gregus, Third Order Linear Differential Equations, Reidel, Dordrecht, 1987
  24. Y. Kuang, Delay Differential Equations with Application in Population Dynamics, Academic Press, New York, 1993
  25. M. A. Krasnoselskii, Some problems of nonlinear analysis, American Mathematical Society Translations, Ser. 2, 10 (1958), pp. 345-409
  26. W. G. Li and Z. H. Shen, An constructive proof of the existence theorem for periodic solutions of Duffing equations, Chinese Sci. Bull. 42 (1997), 1591-1595
  27. Y. Liu, W. Ge, Positive periodic solutions of nonlinear Duffing equations with delay and variable coefficients, Tamsui Oxf. J. Math. Sci. 20 (2004) 235-255
  28. F. Nouioua, A. Ardjouni, A. Djoudi, Periodic solutions for a third-order delay differential equation, Applied Mathematics E-Notes, 16 (2016), 210-221
  29. D. O'Regan, Fixed-point theory for the sum of two operators, Appl. Math. Lett. 9 (1) (1996), 1-8
  30. J. Ren, S. Siegmund and Y. Chen, Positive periodic solutions for third order nonlinear differential equations, Electron. J. Differential Equations, Vol. 2011 (2011), No. 66, 1-19
  31. D. R. Smart, Fixed Points Theorems, Cambridge University Press, Cambridge, 1980
  32. Q. Wang, Positive periodic solutions of neutral delay equations (in Chinese), Acta Math. Sinica (N. S. ) 6(1996), 789-795
  33. Y. Wang, H. Lian and W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Applied Mathematics Letters 20 (2007) 110-115
  34. E. Zeidler, Nonlinear analysis and its applications I: Fixed point theorems, Springer-Verlag, 1985
  35. W. Zeng, Almost periodic solutions for nonlinear Duffing equations, Acta Math. Sinica (N. S. ) 13(1997), 373-380
  36. G. Zhang, S. Cheng, Positive periodic solutions of non-autonomous functional differential equations depending on a parameter, Abstr. Appl. Anal. 7 (2002) 279-286

Полный текст (pdf)