ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Application of Multiple Fourier-Legendre Series to Implementation of Strong Exponential Milstein and Wagner-Platen Methods for Non-commutative Semilinear Stochastic Partial Differential Equations

Автор(ы):

Dmitriy Feliksovich Kuznetsov

Peter the Great Saint-Petersburg Polytechnic University
195251, Saint-Petersburg, Polytechnicheskaya ul., 29
Department of Higher Mathematics
Dr. Sc., Professor

sde_kuznetsov@inbox.ru

Аннотация:

The article is devoted to the application of multiple Fourier-Legendre series for the approximation of iterated stochastic Ito integrals of multiplicities 1 to 3 with respect to the infinite-dimensional Q-Wiener process. These iterated stochastic integrals are a part of the so-called exponential Milstein and Wagner-Platen numerical methods for semilinear stochastic partial differential equations with nonlinear multiplicative trace class noise. The mentioned numerical methods have strong orders of convergence 1.0- and 1.5- correspondingly with respect to the temporal discretization. The theorem on the mean-square convergence of approximations of iterated stochastic Ito integrals of multiplicities 1 to 3 with respect to the infinite-dimensional Q-Wiener process is formulated and proved. The results of this article can be applied to implementation of high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations with nonlinear multiplicative trace class noise.

Ключевые слова

Ссылки:

  1. Kuznetsov, D. F. Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations. Differencialnie Uravnenia i Protsesy Upravlenia. 2019, no. 3, 18-62. Available at: http://diffjournal.spbu.ru/EN/numbers/2019.3/article.1.2.html
  2. Jentzen, A. Taylor expansions of solutions of stochastic partial differential equations. Discrete Contin. Dyn. Systems - B. 14:2 (2010), 515-557
  3. Jentzen, A., Kloeden, P. E. Taylor expansions of solutions of stochastic partial differential equations with additive noise. Ann. Probab. 38: 2 (2010), 532-569
  4. Jentzen, A., Kloeden, P. E. Taylor Approximations for Stochastic Partial Differential Equations. Philadelphia, SIAM Publ., 2011. 224 p
  5. Jentzen, A., Rö ckner, M. Regularity analysis of stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Differ. Eq. 252: 1 (2012), 114-136
  6. Jentzen, A., Rö ckner, M. A Milstein scheme for SPDEs. Foundations Comp. Math. 15: 2 (2015), 313-362
  7. Becker, S., Jentzen, A., Kloeden, P. E. An exponential Wagner-Platen type scheme for SPDEs. SIAM J. Numer. Anal. 54: 4 (2016), 2389-2426
  8. Mishura, Y. S., Shevchenko, G. M. Approximation schemes for stochastic differential equations in a Hilbert space. Theor. Prob. Appl. 51: 3 (2007), 442-458
  9. Pré vô t, C., Rö ckner, M. A concise course on stochastic partial differential equations, vol. 1905 of Lecture Notes in Mathematics. Berlin, Springer Publ., 2007. 148 p
  10. Leonhard, C., Rö ß ler, A. Iterated stochastic integrals in infinite dimensions: approximation and error estimates. Stoch. PDE: Anal. Comp. 7: 2 (2018), 209-239
  11. Leonhard, C. Derivative-free numerical schemes for stochastic partial differential equations. Ph. D., Institute of Mathematics of the University of Lü beck, 2017. 131 pp
  12. Kuznetsov, D. F. Chislennoye integrirovanie stokhasticheskih differencial'nyh uravnenii. 2. [Numerical integration of stochastic differential equations. 2. ]. St. -Petersburg, Polytechn. Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
  13. Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. . S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 4-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs . 4th Ed. ], St. -Petersburg, Polytechn. Univ. Publ., 2010. 786 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-231
  14. Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. (In English). St. -Petersburg, Polytechn. Univ. Publ., 2013. 382 p. DOI: http://doi.org/10 18720/SPBPU/2/s17-234
  15. Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas. Differencialnie Uravnenia i Protsesy Upravlenia. 2017, no. 1, A. 1-A. 385. Available at: http:// /diffjournal. spbu. ru /pdf/kuznetsov_book2. pdf
  16. Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. , 58:7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
  17. Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automat. Remote Control, 79:7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
  18. Kuznetsov, D. F. Stokhasticheskie differencial'nye uravneniya: teoriya i practika chislennogo resheniya. S programmami v srede MATLAB. Izd. 6-e. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB programs. 6-th Ed. ]. Differencialnie Uravnenia i Protsesy Upravlenia. 2018, no. 4, A. 1-A. 1073. (In Russ. ). Available at: http://diffjournal.spbu.ru/RU/numbers/2018.4/article.2.1.html
  19. Kuznetsov, D. F. Expansion of iterated Ito stochastic integrals of arbitrary multiplicity based on generalized multiple Fourier series converging in the mean. (In English). arXiv:1712. 09746 [math. PR]. 2017, 65 pp. Available at: https://arxiv.org/abs/1712.09746
  20. Kuznetsov, D. F. On Numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automat. Remote Control, 80:5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
  21. Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys., 59:8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116
  22. Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (In English). arXiv:2003. 14184 [math. PR]. 2020, 583 pp. Available at: https://arxiv.org/abs/2003.14184
  23. Kolmogorov, A. N., Fomin, S. V. Elementy teorii funkcii i funkcional’nogoanaliza. [Elements of the Theory of Functions and Functional Analysis]. Moscow, Nauka Publ., 1976, 546 p
  24. Da Prato, G., Zabczyk, J. Stochastic equations in infinite dimensions. 2nd Edition. Cambridge, Cambridge University Press Publ., 2014. 493 p
  25. Kuznetsov, D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencialnie Uravnenia i Protsesy Upravlenia. 1997, no. 1, 18-77. (In Russ. ). Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
  26. Suetin, P. K. Klassicheskije ortogonal'nye mnogochleny. Izd 3-e. [Classical orthogonal polynomials. 3rd Ed. ]. Moskow, Fizmatlit Publ., 2005. 480 p

Полный текст (pdf)