Application of Multiple Fourier-Legendre Series to Implementation of Strong Exponential Milstein and Wagner-Platen Methods for Non-commutative Semilinear Stochastic Partial Differential Equations
Автор(ы):
Dmitriy Feliksovich Kuznetsov
Peter the Great Saint-Petersburg Polytechnic University
195251, Saint-Petersburg, Polytechnicheskaya ul., 29
Department of Higher Mathematics
Dr. Sc., Professor
sde_kuznetsov@inbox.ru
Аннотация:
The article is devoted to
the application of multiple Fourier-Legendre series for
the approximation of iterated stochastic Ito integrals
of multiplicities 1 to 3 with respect to the infinite-dimensional
Q-Wiener process. These iterated stochastic integrals are a part of
the so-called exponential Milstein and
Wagner-Platen numerical methods for semilinear stochastic
partial differential equations with nonlinear multiplicative trace class
noise. The mentioned numerical methods have
strong orders of convergence 1.0- and 1.5- correspondingly
with respect to the temporal discretization.
The theorem on the mean-square convergence
of approximations of iterated stochastic Ito integrals
of multiplicities 1 to 3 with respect to the infinite-dimensional
Q-Wiener process is formulated and proved.
The results of this article can be applied to
implementation of high-order strong numerical methods
for non-commutative semilinear stochastic
partial differential equations
with nonlinear multiplicative trace class
noise.
Ключевые слова
- expansion
- exponential Milstein scheme
- exponential Wagner-Platen scheme
- generalized multiple Fourier series
- infinite-dimensional Q-Wiener process
- iterated stochastic Ito integral
- Legendre polynomials
- mean-square approximation
- multiple Fourier-Legendre series
- multiplicative trace class noise
- non-commutative semilinear stochastic partial differential equation
Ссылки:
- Kuznetsov, D. F. Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations. Differencialnie Uravnenia i Protsesy Upravlenia. 2019, no. 3, 18-62. Available at: http://diffjournal.spbu.ru/EN/numbers/2019.3/article.1.2.html
- Jentzen, A. Taylor expansions of solutions of stochastic partial differential equations. Discrete Contin. Dyn. Systems - B. 14:2 (2010), 515-557
- Jentzen, A., Kloeden, P. E. Taylor expansions of solutions of stochastic partial differential equations with additive noise. Ann. Probab. 38: 2 (2010), 532-569
- Jentzen, A., Kloeden, P. E. Taylor Approximations for Stochastic Partial Differential Equations. Philadelphia, SIAM Publ., 2011. 224 p
- Jentzen, A., Rö ckner, M. Regularity analysis of stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Differ. Eq. 252: 1 (2012), 114-136
- Jentzen, A., Rö ckner, M. A Milstein scheme for SPDEs. Foundations Comp. Math. 15: 2 (2015), 313-362
- Becker, S., Jentzen, A., Kloeden, P. E. An exponential Wagner-Platen type scheme for SPDEs. SIAM J. Numer. Anal. 54: 4 (2016), 2389-2426
- Mishura, Y. S., Shevchenko, G. M. Approximation schemes for stochastic differential equations in a Hilbert space. Theor. Prob. Appl. 51: 3 (2007), 442-458
- Pré vô t, C., Rö ckner, M. A concise course on stochastic partial differential equations, vol. 1905 of Lecture Notes in Mathematics. Berlin, Springer Publ., 2007. 148 p
- Leonhard, C., Rö ß ler, A. Iterated stochastic integrals in infinite dimensions: approximation and error estimates. Stoch. PDE: Anal. Comp. 7: 2 (2018), 209-239
- Leonhard, C. Derivative-free numerical schemes for stochastic partial differential equations. Ph. D., Institute of Mathematics of the University of Lü beck, 2017. 131 pp
- Kuznetsov, D. F. Chislennoye integrirovanie stokhasticheskih differencial'nyh uravnenii. 2. [Numerical integration of stochastic differential equations. 2. ]. St. -Petersburg, Polytechn. Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. . S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 4-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs . 4th Ed. ], St. -Petersburg, Polytechn. Univ. Publ., 2010. 786 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-231
- Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. (In English). St. -Petersburg, Polytechn. Univ. Publ., 2013. 382 p. DOI: http://doi.org/10 18720/SPBPU/2/s17-234
- Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas. Differencialnie Uravnenia i Protsesy Upravlenia. 2017, no. 1, A. 1-A. 385. Available at: http:// /diffjournal. spbu. ru /pdf/kuznetsov_book2. pdf
- Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. , 58:7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
- Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automat. Remote Control, 79:7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
- Kuznetsov, D. F. Stokhasticheskie differencial'nye uravneniya: teoriya i practika chislennogo resheniya. S programmami v srede MATLAB. Izd. 6-e. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB programs. 6-th Ed. ]. Differencialnie Uravnenia i Protsesy Upravlenia. 2018, no. 4, A. 1-A. 1073. (In Russ. ). Available at: http://diffjournal.spbu.ru/RU/numbers/2018.4/article.2.1.html
- Kuznetsov, D. F. Expansion of iterated Ito stochastic integrals of arbitrary multiplicity based on generalized multiple Fourier series converging in the mean. (In English). arXiv:1712. 09746 [math. PR]. 2017, 65 pp. Available at: https://arxiv.org/abs/1712.09746
- Kuznetsov, D. F. On Numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automat. Remote Control, 80:5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
- Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys., 59:8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (In English). arXiv:2003. 14184 [math. PR]. 2020, 583 pp. Available at: https://arxiv.org/abs/2003.14184
- Kolmogorov, A. N., Fomin, S. V. Elementy teorii funkcii i funkcional’nogoanaliza. [Elements of the Theory of Functions and Functional Analysis]. Moscow, Nauka Publ., 1976, 546 p
- Da Prato, G., Zabczyk, J. Stochastic equations in infinite dimensions. 2nd Edition. Cambridge, Cambridge University Press Publ., 2014. 493 p
- Kuznetsov, D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencialnie Uravnenia i Protsesy Upravlenia. 1997, no. 1, 18-77. (In Russ. ). Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
- Suetin, P. K. Klassicheskije ortogonal'nye mnogochleny. Izd 3-e. [Classical orthogonal polynomials. 3rd Ed. ]. Moskow, Fizmatlit Publ., 2005. 480 p