ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Growth Conditions for Asymptotic Behavior of Solutions for Certain Time-varying Differential Equations

Автор(ы):

H. Damak

University of Sfax Tunisia,
Faculty of Science of Sfax, Department of Mathematics

M. A. Hammami

University of Sfax Tunisia,
Faculty of Science of Sfax, Department of Mathematics

MohamedAli.Hammami@fss.rnu.tn

A. Kicha

University of Sfax Tunisia,
Faculty of Science of Sfax, Department of Mathematics

Аннотация:

The question proposed in this paper is related to the study of the preservation of uniform h-stability and uniform boundedness of time-varying nonlinear differential equations with a perturbation using Gronwall's inequalities and Lyapunov's theory. Moreover, we show the linearization technique for the uniform h-stability of a nonlinear system and give necessary and sufficient conditions for the global boundedness of perturbed systems. The last part is devoted to the study of the problem of h-stabilization for certain classes of nonlinear systems. Some examples and simulations are given to illustrate the main results.

Ключевые слова

Ссылки:

  1. A. BenAbdallah, M. Dlala and M. A. Hammami, A new Lyapunov function for perturbed nonlinear systems, Systems and Control Letters (2007), 56, No. 3, 179-187
  2. A. BenAbdallah and M. A. Hammami, On the output feedback stability for nonlinear uncertain control systems, International Journal of Control 74 (2001), 547-551
  3. P. Bohl, Ü ber Differentialgleichungen, Journal fr die reine und angewandte Mathematik, 144 (1913), 284-318
  4. M. Corless and L. Glielmo, New converse Lyapunov theorems and related results on exponential stability, Mathematics of Control, Signals, and Systems 11 (1998), 79-100
  5. H. Damak, I. Ellouze and M. A. Hammami, A separation principle of timevarying nonlinear dynamical systems, Differential Equations and control Processes (2013), No. 1, 35-49
  6. H. Damak, M. A. Hammami and A. Kicha. A converse theorem on practical h-stability of nonlinear systems. Mediterranean Journal of Mathematics 17 (2020), No. 88, 1-18
  7. H. Damak, M. A. Hammami and A. Kicha. A converse theorem for practical h-stability of time-varying nonlinear systems. New Zealand Journal of Mathematics 50 (2020), 109-123
  8. F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differential equations, Journal of Mathematical Analysis and Applications 113 (1986), 562-577
  9. Z. Hadj Salem, B. Ben Hamed and M. A. Hammami, Stability of nonlinear time-varying perturbed differntial equations, Nonlinear Dynamics 73 (2013), 1353-1365
  10. S. F. Hafstein, A constructive converse Lyapunov theorem on exponential stability, Discrete and Continuous Dynamical Systems 10 (2004), 657-678
  11. W. Hahn, Stability of motion, Springer (1967)
  12. A. Hamza and K. Oraby, Stability of abstract dynamic equations on time scales by Lyapunov’s second method, Turkish Journal of Mathematics 42 (2018), 841-861
  13. N. A. Izobov, Linear systems of ordinary differential equations, Journal of Soviet mathematics, 5 (1974), No. 1, 46-96 Itogi Nauki i Tekhniki Matematicheskii Analiz 12, 71-146
  14. H. K. Khalil, Nonlinear systems, Prentice-Hall, New York (2002)
  15. R. Medina and M. Pinto, Stability of nonlinear difference equations, Procedure Dynamical Systems and Applications 2 (1996), 397-404
  16. V. M. Millionshchikov, Typical properties of conditional exponential stability II, Differential equations 19, No. 9, 1126-1132 Differentsial’nye Uravneniya 19 (1983), No. 9, 1503-1510
  17. V. M. Millionshchikov, Typical properties of conditional exponential stability VI, Differential equations 20, No. 6, 707-715 Differentsial’nye Uravneniya 20 (1984), No. 6
  18. V. M. Millionshchikov, Typical properties of conditional exponential stability VII, Differential equations 20, No. 8, 1005-1013 Differentsial’nye Uravneniya 20 (1984), No. 8, 1366-1376
  19. V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton University Press (1960) (Translated from Russian)
  20. M. Pinto, Stability of nonlinear differential system, Applicable Analysis 43 (1992), 1-20
  21. M. Pinto, Perturbations of asymptotically stable differential equations, Analysis 4 (1984), 161-175
  22. R. E. Vinograd, Estimates of the upper exponents at low perturbations, Doklady 114 (1957), No. 3, 459-461
  23. R. E. Vinograd, Simultaneous attainability of central Lyapunov and Bohl exponents for ODE linear systems, Proceedings of the American Mathematical Society 88 (1983), No. 4, 595-601
  24. B. T. Yoshizawa, Lyiapunov’s function and boundedness of solutions, Funkcialaj Ekvascioj 2 (1958), 71-103

Полный текст (pdf)