ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

Model Map and Multistability for a Two Predator-One Prey System

Автор(ы):

Gunnar Johannes Soderbacka

Docent, Department of Mathematics,
Abo Akademi,
Turku FI-20500, Finland

gsoderba@abo.fi

Аннотация:

This work contains a review of some important results on a known two predators - one prey system. We also add essential new numerical results on multiple attractors. We consider the case when the predators coexist. We distinguish two possibilities. The first is when the dynamics is well described by the dynamics of a one dimensional map. We discuss the main behaviour of this map. For small parameter regions the map can have two attractors but no more than two. We give a numerical example, when these two attractors exist in the original three-dimensional model. The second case is when this model map is not working and something like spiral chaos often occurs. We give numerical results showing that in this case there can be at least four different attractors and discuss the behaviour of these.

Ключевые слова

Ссылки:

  1. Eirola, T., Osipov, A., V., Söderbacka, G. Chaotic regimes in a dynamical system of the type many predators one prey. Research reports A 386, Helsinki University of Technology, (1996)
  2. Eirola, T., Osipov, A., V., Söderbacka, G. On the appearance of chaotic regimes in one dynamical system of type two perdators - one prey, Actual Problems of Modern Mathematics, Boxitogorsk, 1, 39-70 (1996)
  3. Hsu, B., Hubell, S., P., Waltman, P. Competing predators, SIAM J. Appl. Math. 35, No. 4, 617-625 (1978)
  4. Hsu, S., B. Limiting behaviour for competing species, SIAM J. Appl. Math. 34, No. 4, 760-763 (1978)
  5. Hsu, B., Hubell, S., P., Waltman, P. A contribution to the theory of competing predators, Ecological Monographs 48, No. 3, 337-349 (1978)
  6. Hsu, S., B., Shi, J. Relaxation oscillation profile of limit cycle in predator-prey system, Discrete and Continuous Dynamical Systems Series B 11, No. 4, 893-911 (2009)
  7. Kryzhewich S., Avrutin V., Söderbacka, G. Bistability in a one-dimensional model of a two-predators-one-prey population dynamics system, Lobachevskii Journal of Mathematics, 2021, Vol. 42, No. 14, pp. 3486-3496.
  8. Lundström, N., L., P., Söderbacka, G. Estimates of size of cycle in a predator-prey system, Differential Equations and Dynamical Systems, DOI: 10. 1007/s12591-018-0422-x (2018)
  9. A. V. Osipov, G. Söderbacka. Extinction and coexistence of predators. Dinamicheskie sistemy, 6, 1, (2016), 55-64.
  10. Osipov A. V., Söderbacka G., Poincare map construction for some classic two predators - one prey systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 27, (2017), no 8, 1750116, 9 pp
  11. G. J. Söderbacka, A. S. Petrov. Review on the behaviour of a many predator - one prey system. Dinamicheskie sistemy. 2019, 9(37), No3, pp 273-288.

Полный текст (pdf)