A New Proof of the Expansion of Iterated Ito Stochastic Integrals with Respect to the Components of a Multidimensional Wiener Process Based on Generalized Multiple Fourier Series and Hermite Polynomials
Автор(ы):
Dmitriy Feliksovich Kuznetsov
Peter the Great Saint-Petersburg Polytechnic University
195251, Saint-Petersburg, Polytechnicheskaya ul., 29
Department of Higher Mathematics
Dr. Sc., Professor
sde_kuznetsov@inbox.ru
Аннотация:
The article is devoted to a new proof of the expansion
for iterated Ito stochastic integrals with
respect to the components of a multidimensional Wiener process.
The above expansion is based on Hermite polynomials and generalized
multiple Fourier series in arbitrary
complete orthonormal systems of functions in a Hilbert space.
In 2006, the author obtained a similar expansion, but with a lesser degree
of generality, namely, for the case of continuous or piecewise continuous
complete orthonornal systems of functions in a Hilbert space.
In this article, the author generalizes the expansion of iterated
Ito stochastic integrals obtained by him in 2006 to the case
of an arbitrary complete orthonormal systems of functions in a Hilbert space
using a new approach based on the Ito formula.
The obtained expansion of iterated Ito stochastic integrals is useful
for constructing of high-order strong numerical methods
for systems of Ito stochastic differential equations with
multidimensional non-commutative noise.
Ключевые слова
- expansion
- generalized multiple Fourier series
- Hermite polynomial
- iterated Ito stochastic integral
- Ito stochastic differential equation
- mean-square convergence
- multidimensional Wiener process
- multiple Wiener stochastic integral
Ссылки:
- Gihman, I. I., Skorohod, A. V. Stokhasticheskie differencial’nye uravnenia i ih prilozhenia [Stochastic differential equations and its applications]. Kiev, Naukova Dumka Publ., 1982. 612 p
- Kloeden, P. E., Platen, E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
- Milstein G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ. 225 p
- Milstein, G. N., Tretyakov, M. V. Stochastic numerics for mathematical physics. Berlin, Springer-Verlag Publ., 2004. 596 p
- Kloeden, P. E., Platen, E., Schurz, H. Numerical solution of SDE through computer experiments. Berlin, Springer-Verlag Publ., 1994. 292 p
- Kuznetsov, D. F. Chislennoye integrirovanie stokhasticheskih differencial'nyh uravnenii. 2. [Numerical integration of stochastic differential equations. 2]. St. -Petersburg, Polytechnic Univ. Publ., 2006. 764 p
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 2-e. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB 7. 0 programs. 2nd ed. ]. St. -Petersburg, Polytechnic Univ. Publ., 2007. 770 p
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 3-e. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB 7. 0 programs. 3rd ed. ]. St. -Petersburg, Polytechnic Univ. Publ., 2009. 768 p
- Kuznetsov, D. F. Mean-square approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical integration of Ito SDEs and semilinear SPDEs (Third edition). Differencialnie Uravnenia i Protsesy Upravlenia. 2023, no. 1, A. 1-A. 947 (In English)
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (In English). arXiv:2003. 14184v46 [math. PR]. 2023, 998 p
- Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. St. -Petersburg, Polytechnic Univ. Publ., 2013. 382 p. (In English)
- Kuznetsov, D. F. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB programs. 6-th Ed. ]. Differencialnie Uravnenia i Protsesy Upravlenia, 2018, no. 4, A. 1-A. 1073 (In Russ. )
- Kuznetsov, M. D., Kuznetsov, D. F. SDE-MATH: A software package for the implementation of strong high-order numerical methods for Ito SDEs with multidimensional non-commutative noise based on multiple Fourier-Legendre series. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 1, 93-422 (In English)
- Kuznetsov, D. F., Kuznetsov, M. D. Mean-square approximation of iterated stochastic integrals from strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs based on multiple Fourier-Legendre series. Recent developments in stochastic methods and applications. ICSM-5 2020. Springer Proceedings in Mathematics & Statistics, vol 371, Ed. Shiryaev, A. N., Samouylov, K. E., Kozyrev, D. V. Cham, Springer Publ., 2021, pp. 17-32
- Kuznetsov, D. F. Expansion of iterated Ito stochastic integrals of arbitrary multiplicity based on generalized multiple Fourier series converging in the mean. (In English). arXiv:1712. 09746v30 [math. PR]. 2023, 144 p
- Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. , 58, 7 (2018), 1058-1070
- Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automat. Remote Control, 79, 7 (2018), 1240-1254
- Kuznetsov, D. F. On Numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automat. Remote Control, 80, 5 (2019), 867-881
- Kuznetsov, D. F. Explicit one-step numerical method with the strong convergence order of 5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor-Stratonovich expansion. Comp. Math. Math. Phys. 60, 3 (2020), 379-389
- Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys. , 59, 8 (2019), 1236-1250
- Allen, E. Approximation of triple stochastic integrals through region subdivision. Commun. Appl. Analysis (Special Tribute Issue to Professor V. Lakshmikantham), 17 (2013), 355-366
- Li C. W., Liu X. Q. Approximation of multiple stochastic integrals and its application to stochastic differential equations. Nonlinear Anal. Theor. Meth. Appl. 30, 2 (1997), 697-708
- Tang, X., Xiao, A. Asymptotically optimal approximation of some stochastic integrals and its applications to the strong second-order methods. Adv. Comp. Math. 45 (2019), 813-846
- Gaines, J. G., Lyons, T. J. Random generation of stochastic area integrals. SIAM J. Appl. Math. 54 (1994), 1132-1146
- Wiktorsson, M. Joint characteristic function and simultaneous simulation of iterated Ito integrals for multiple independent Brownian motions. Ann. Appl. Prob. 11, 2 (2001), 470-487
- Ryden, T., Wiktorsson, M. On the simulation of iterated Ito integrals. Stoch. Proc. Appl. , 91, 1 (2001), 151-168
- Averina, T. A., Prigarin, S. M. Calculation of stochastic integrals of Wiener processes. Preprint 1048. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences., 1995, 15 pp. (In Russ. )
- Prigarin, S. M., Belov, S. M. One application of series expansions of Wiener process. Preprint 1107. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences, 1998, 16 p. (In Russ. )
- Kloeden, P. E., Platen, E., Wright, I. W. The approximation of multiple stochastic integrals. Stoch. Anal. Appl. 10, 4 (1992), 431-441
- Rybakov, K. Application of Walsh series to represent iterated Stratonovich stochastic integrals. IOP Conf. Ser. : Mater. Sci. Eng. 927. 2020, (2020), article id: 012080, 10 p
- Rybakov, K. Spectral representations of iterated stochastic integrals and their application for modeling nonlinear stochastic dynamics. Mathematics. 11, 19 (2023), 4047
- Rybakov, K. A. Using spectral form of mathematical description to represent Ito iterated stochastic integrals. vol 274. Springer Publ., 2022, pp. 331-344
- Kuznetsov, D. F. Approximation of iterated Ito stochastic integrals of the second multiplicity based on the Wiener process expansion using Legendre polynomials and trigonometric functions (In Russ). Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 4, 32-52 (In Russ. )
- Foster, J., Habermann, K. Brownian bridge expansions for Levy area approximations and particular values of the Riemann zeta function. Combin. Prob. Comp. (2022), 1-28
- Kastner, F., Rö ß ler, A. An analysis of approximation algorithms for iterated stochastic integrals and a Julia and MATLAB simulation toolbox. arXiv:2201. 08424v1 [math. NA], 2022, 43 p
- Malham, S. J. A., Wiese A. Efficient almost-exact Levy area sampling. Stat. Prob. Letters, 88 (2014), 50-55
- Stump, D. M., Hill J. M. On an infinite integral arising in the numerical integration of stochastic differential equations. Proc. Royal Soc. of London. Series A. Math., Phys. Eng. Sci., 461, 2054 (2005), 397-413
- Platen, E., Bruti-Liberati, N. Numerical solution of stochastic differential equations with jumps in finance. Berlin, Heidelberg, Springer-Verlag Publ., 2010. 868 p
- Rybakov, K. A. Orthogonal expansion of multiple Ito stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 3, 109-140 (In Russ. )
- Ito, K. Multiple Wiener integral. J. Math. Soc. Japan. 3, 1 (1951), 157-169
- Chung, K. L., Williams, R. J. Introduction to stochastic integration. 2nd Ed. Probability and its Applications. Ed. Liggett T., Newman C., Pitt L. Boston, Basel, Berlin, Birkhauser Publ., 1990. 276 p
- Kuo, H. -H. Introduction to Stochastic Integration. Universitext (UTX). N. Y., Springer Publ., 2006. 289 p
- Fox, R., Taqqu, M. S. Multiple stochastic integrals with dependent integrators. J. Multivariate Anal. 21 (1987), 105-127
- Major, P. The theory of Wiener-Ito integrals in vector valued Gaussian stationary random fields. Part I. Moscow Math. J. 20, 4 (2020), 749-812
- Major, P. Multiple Wiener-Ito integrals with applications to limit theorems. Second ed. Cham, Heidelberg, New York, Dordrecht, London, Springer Publ., 2014. 126 p
- Major, P. Wiener-Ito integral representation in vector valued Gaussian stationary random fields. arXiv:1901. 04084v1 [math. PR]. 2019, 90 p