Управление с итеративным обучением на основе наблюдаемого выхода с учетом нелинейности типа насыщения
Автор(ы):
Юлия Павловна Емельянова
к.ф.-м.н. доцент кафедры прикладной математики Арзамасского политехнического института (филиала) Нижегородского государственного технического университета им. Р.Е. Алексеева
emelianovajulia@gmail.com
Аннотация:
Рассматривается линейная дискретная система, функционирующая в повторяющемся режиме, задачей которой является слежение за эталонной траекторией с требуемой точностью.
Параметры системы точно неизвестны и описываются аффинными моделями неопределенности. Предлагается новый метод синтеза управления с итеративным обучением на основе информации
о измеряемом выходном сигнале, с учетом нелинейности типа насыщения, присущей исполнительным механизмам роботов, позволяющий обеспечить необходимую точность слежения.
Постановка задачи мотивирована тенденциями развития высокоточных интеллектуальных и аддитивных производств, а также медицинских реабилитационных роботов.
Приведен пример, демонстрирующий эффективность метода.
Ключевые слова
- векторная функция Ляпунова
- насыщение
- неопределенности
- управление с итеративным обучением
Ссылки:
- Rogers E., Chu B., Freeman C., Lewin P. Iterative Learning Control Algorithms and Experimental Benchmarking. John Wiley, 2023
- Bristow D. A., Tharayil M., Alleyne A. G. A survey of iterative learning // IEEE Control Systems Magazine. 2006. V. 26. No. 3. pp. 96-114
- Freeman C. T., Rogers E., Hughes A. -M., Burridge J. H., Meadmore K. T. Iterative Learning Control in Health Care: Electrical Stimulation and Robotic-Assisted Upper-Limb Stroke Rehabilitation // IEEE Control Systems. 2012. V. 32, Issue 1. pp. 18-43
- Meadmore K. L., Exell T. A., Hallewell E., Hughes A. -M., Freeman C. T., Kutlu M., Benson V., Rogers E. , Burridge J. H. The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study, Journal of NeuroEngineering and Rehabilitation, 11(1):105, 2014
- Sakariya S. E., Freeman C. T., and Yang K., Iterative learning control of functional electrical stimulation in the presence of voluntary user effort // Control Engineering Practice, vol. 96, pp. 1-11, 2020
- Ketelhut M., Stemmler S., Gesenhues J., Hein M., Abel D., Iterative learning control of ventricular assist devices with variable cycle durations, Control Engineering Practice, vol. 83, pp. 33-44, 2019
- Barton K., Kingston D. Systematic Surveillance for UAVs: A Feedforward Iterative Learning Control Approach // 2013 American Control Conference (ACC). 2013. pp. 5917-5922
- Freeman C. T., Tan Y. Iterative Learning Control With Mixed Constraints for Point-to-Point Tracking // IEEE Transactions on Control Systems Technology. 2013. Vol. 21, Issue 3. pp. 604-616
- Tutty O., Blackwell M., Rogers E., Sandberg R. Iterative learning control of wind turbine smart rotors with pressure sensors // 2013 American Control Conference (ACC). 2013. pp. 967-979
- Nowicka W. N., Chu B., Tutty O. R., Rogers E. Reducing Aerodynamic Load Fluctuation in Wind Turbines using Iterative Learning Control laws Designed Using Reduced Order Models of the Flow // American Control Conference (ACC). 2022. pp. 4242-4247
- Johansen S. V., Jensen M. R., Chu B., Bendtsen J. D., Mogensen J., Rogers E. Broiler FCR Optimization Using Norm Optimal Terminal Iterative Learning Control // IEEE Transactions on Control Systems Technology. 2021. Vol. 29, No. 2. pp. 580-592
- Sebastian G., Tan Y., Oetomo D. Convergence analysis of feedback-based iterative learning control with input saturation // Automatica. 2019. V. 101. pp. 44-52
- Sebastian G. , Tan Y. , Oetomo D. , Mareels I. Iterative learning control for linear time-varying systems with input and output constraints // Australian & New Zealand Control Conference (ANZCC), Melbourne, Australia, December 2018, pp. 87-92
- Zhang J., Meng D. Convergence Analysis of Saturated Iterative Learning Control Systems With Locally Lipschitz Nonlinearities // IEEE Transactions on neutral networks and learning systems. 2020. V. 31, No. 10. pp. 4025-4035
- Xu J. -X., Tan Y., Lee T. -H. Iterative learning control design based on composite energy function with input saturation // Automatica, vol. 40, pp. 1371-1377, 2004
- Yu Q., Hou Z., Chi R. Adaptive iterative learning control for nonlinear uncertain systems with both state and input constraints // J. Franklin Institute, vol. 353, pp. 3920-3943, 2016
- Ljesnjanin M., Tan Y., Oetomo D., Freeman C. T. Spatial iterative learning control: Systems with input saturation // American Control Conference, Seattle, USA, May 2017, pp. 5121-5126
- Zhang R., Chi R. Iterative learning control for a class of MIMO nonlinear system with input saturation constraint // Chinese Control Conference, Dalian, China, July 2017, pp. 3543-3547
- Mishra S., Topcu U., Tomizuka M. Iterative learning control with saturation constraints // American Control Conference, St. Louis, MO, USA, June 2009, pp. 943-948
- Wei Z. -B., Quan Q., Cai K. -Y. Output feedback ILC for a class of nonminimum phase nonlinear systems with input saturation: An additive-state-decomposition based method // IEEE Trans. Autom. Control, vol. 62, no. 1, pp. 502-508, 2017
- Pakshin P., Emelianova J., Rogers E., Galkowski K. Iterative learning control for switched systems in the presence of input saturation // IFAC-PapersOnLine. 2020. Vol. 53. pp. 1444-1449
- Pakshin P., Emelianova J., Rogers E., Galkowski K. Iterative Learning Control with Input Saturation // IFAC-PapersOnLine. 2019. Vol. 52, No. 29. pp. 338-343
- Pakshin P., Mandra S., Emelianova J., Erwinski K., Galkowski K. Experimentally Validated Vector Lyapunov Function-Based Iterative Learning Control Design Under Input Saturation // IEEE Transactions on Control Systems Technology, 2024, Vol. 32, No. 1, pp. 189-201
- Pakshin P., Emelianova J., Emelianov M., Galkowski K., Rogers E. Dissipativity and Stabilization of Nonlinear Repetitive Processes. Systems & Control Letters. 2016. V. 91. pp. 14-20
- Поляк Б. Т., Хлебников М. В., Щербаков П. С. Управление линейными системами при внешних возмущениях: Техника линейных матричных неравенств. М. : ЛЕНАНД, 2014
- Qamsane Y., Balta E. C., Moyne J., Tilbury D., Barton K. Dynamic Rerouting of Cyber-Physical Production Systems in Response to Disruptions Based on SDC Framework // 2019 American Control Conference (ACC). 2019. P. 3650-3657
- Afkhami Z., Hoelzle D. J., Barton K., Robust Higher-Order Spatial Iterative Learning Control for Additive Manufacturing Systems // IEEE Transactions on Control Systems Technology. 2023. V. 31. P. 1692-1707
- Tarbouriech S., Garcia G., Gomes da Silva Jr. J. M., Queinnec I. Stability and Stabilization of Linear Systems with Saturating Actuators. London: Springer-Verlag. 2011
- Yakubovich V. A., Leonov G. A., Gelig A. Kh. , Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. London: World Scientific Press. 2004
- Hladowski L., Galkowski K., Cai Z., Rogers E., Freeman C., Lewin P. Experimentally Supported 2D Systems Based Iterative Learning Control Law Design for Error Convergence and Performance // Control Eng. Pract. 2010. V. 18. pp. 339-348