SDE-MATH: A Software Package for the Implementation of Strong High-order Numerical Methods for Ito SDEs with Multidimensional Non-commutative Noise Based on Multiple Fourier-Legendre Series
Author(s):
Mikhail Dmitrievich Kuznetsov
Saint-Petersburg Electrotechnical University,
ul. Professora Popova, 5, 197376, Saint-Petersburg, Russia,
Faculty of Computer Technologies and Informatics,
Department of Information Systems,
Master student
Dmitriy Feliksovich Kuznetsov
Peter the Great Saint-Petersburg Polytechnic University,
Polytechnicheskaya ul., 29, 195251, Saint-Petersburg, Russia,
Institute of Applied Mathematics and Mechanics,
Department of Higher Mathematics,
Doctor of physico-mathematical sciences, Professor
sde_kuznetsov@inbox.ru
Abstract:
The article is devoted to the implementation of strong numerical
methods with convergence orders 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 for Ito
stochastic differential equations with multidimensional non-commutative noise
based on multiple Fourier-Legendre series and unified Taylor-Ito and
Taylor-Stratonovich expansions. Algorithms for the implementation of these methods
are constructed and a package of programs in the Python programming language
is presented. An important part of this software package concerning the
mean-square approximation of iterated Ito and Stratonovich stochastic integrals
of multiplicities 1 to 6 with respect to components of the multidimensional
Wiener process is based on the method of generalized multiple Fourier series.
More precisely, we used multiple Fourier-Legendre series converging in the sense
of norm in Hilbert space for the mean-square approximation of iterated Ito and
Stratonovich stochastic integrals.
Keywords
- generalized multiple Fourier series
- high-order strong numerical scheme
- iterated Ito stochastic integral
- iterated Stratonovich stochastic integral
- Ito stochastic differential equation
- Legendre polynomial
- mean-square approximation
- Milstein scheme
- multidimensional Wiener process
- multiple Fourier-Legendre series
- non-commutative noise
- numerical method
- Python programming language
- Software package
- strong convergence
- unified Taylor-Ito expansion
- unified Taylor-Stratonovich expansion
References:
- Ito, K. On stochastic differential equations. Memoirs Amer. Math. Soc. , 4 (1951), 1-51
- Kloeden, P. E., Platen, E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
- Kloeden, P. E., Platen, E., Schurz, H. Numerical solution of SDE through computer experiments. Berlin, Springer-Verlag Publ., 1994. 292 p
- Arato, M. Linear stochastic systems with constant coefficients. A statistical approach. Berlin, Heidelberg, N. Y., Springer-Verlag Publ., 1982. 289 p
- Shiryaev, A. N. Essentials of stochastic finance: facts, models, theory. World Scientic Publishing Co United States, 1999. 852 pp
- Karatzas, I., Shreve, S. Methods of mathematical finance. New York, Springer-Verlag Publ., 1998. 415 p
- Platen, E., Bruti-Liberati, N. Numerical solution of stochastic differential equations with jumps in finance. Berlin, Heidelberg, Springer-Verlag Publ., 2010. 868 p
- Han, X., Kloeden, P. E., Random ordinary differential equations and their numerical solution. Singapore , Springer Publ., 2017. 250 p
- Allen, E. Modeling with Ito stochastic differential equations. Dordrecht, Springer, 2007. 230 p
- Merton, R. C. Continuous-time finance. Oxford, Blackwell Publ., 1992. 754 p
- Heston, S. L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies. 6, 2 (1993), 327-343
- Cox, J. C., Ingersoll, J. E., Ross, S. A. A Theory of the term structure of interest rates. Econometrica. 53 (1985), 385-408
- Kimura, M., Ohta, T. Theoretical aspects of population genetics. Boston, Princeton Univ. Press, 1971. 232 p
- Iacus, S. M. Simulation and inference for stochastic differential equations. With R examples. New-York, Springer-Verlag Publ., 2008, 285 p
- Ricciardi, L. M. Diffusion processes and related topics in biology. Lecture notes in biomathematics. New-York, Springer, 1977. 202 p
- Stratonovich, R. L., Izbrannye voprosy teorii fluktuatsii v radiotekhnike [Selected problems of fluctuations theory in radio engineering]. Moscow, Sovetskoe Radio Publ., 1961. 556 p
- Liptser, R. Sh., Shirjaev, A. N. Statistika sluchainyh processov: nelineinaya filtracia i smezhnye voprosy. [Statistics of Stochastic Processes: Nonlinear Filtering and Related Problems. Moscow, Nauka Publ., 1974. 696 p
- Nasyrov, F. S. Lokal'nye vremena, simmetrichnyje integraly i stochasticheskiy analiz [Local times, symmetric integrals and stochastic analysis]. Moscow, Fizmatlit Publ., 2011. 212 p
- Kagirova, G. R., Nasyrov, F. S. On an optimal filtration problem for one-dimensional diffusion processes. Siberian Adv. Math. 28, 3 (2018), 155-165
- Chugai, K. N., Kosachev, I. M., Rybakov, K. A. Approximate filtering methods in continuous-time stochastic systems. Smart Innovation, Systems and Technologies, vol. 173, Eds. Jain L. C., Favorskaya M. N., Nikitin I. S., Reviznikov D. L. Springer Publ., 2020, pp. 351-371. DOI: https://doi.org/10.1007/978-981-15-2600-8_24
- Averina, T. A., Rybakov, K. A. Using maximum cross section method for filtering jump-diffusion random processes. Russ. J. Numer. Anal. Math. Modelling. 35, 2 (2020), 55-67. DOI: http://doi.org/10.1515/rnam-2020-0005
- Kloeden, P. E., Platen, E., Schurz, H., Sorensen, M. On effects of discretization on estimators of drift parameters for diffusion processes. J. Appl. Probab. , 33 (1996), 1061-1076
- Clark J. M. C., Cameron R. J. The maximum rate of convergence of discrete approximations for stochastic differential equations. Stochastic Differential Systems Filtering and Control. Lecture Notes in Control and Information Sciences, vol 25. Ed. Grigelionis B. Berlin, Heidelberg, Springer Publ., 1980. 162-171
- Kulchitskiy, O. Yu., Kuznetsov, D. F. The unified Taylor-Ito expansion. J. Math. Sci. (N. Y. ). 99, 2 (2000), 1130-1140. DOI: http://doi.org/10.1007/BF02673635
- Kuznetsov, D. F. New representations of the Taylor-Stratonovich expansion. J. Math. Sci. (N. Y. ). 118, 6 (2003), 5586-5596. DOI: http://doi.org/10.1023/A:1026138522239
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 4, A. 1-A. 606. Available at: http://diffjournal.spbu.ru/EN/numbers/2020.4/article.1.8.html
- Milstein G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ. 225 p
- Kloeden, P. E., Platen, E., Wright, I. W. The approximation of multiple stochastic integrals. Stoch. Anal. Appl. 10, 4 (1992), 431-441
- Averina, T. A., Prigarin, S. M. Calculation of stochastic integrals of Wiener processes. Preprint 1048. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences., 1995, 15 pp. (In Russ. )
- Prigarin, S. M., Belov, S. M. One application of series expansions of Wiener process. Preprint 1107. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences, 1998, 16 p. (In Russ. )
- Wiktorsson, M. Joint characteristic function and simultaneous simulation of iterated Ito integrals for multiple independent Brownian motions. Ann. Appl. Prob. 11, 2 (2001), 470-487
- Ryden, T., Wiktorsson, M. On the simulation of iterated Ito integrals. Stoch. Proc. and their Appl. , 91, 1 (2001), 151-168
- Gaines, J. G., Lyons, T. J. Random generation of stochastic area integrals. SIAM J. Appl. Math. 54 (1994), 1132-1146
- Milstein, G. N., Tretyakov, M. V. Stochastic numerics for mathematical physics. Berlin, Springer-Verlag Publ., 2004. 616 p
- Allen, E. Approximation of triple stochastic integrals through region subdivision. Commun. Appl. Analysis (Special Tribute Issue to Professor V. Lakshmikantham), 17 (2013), 355-366
- Rybakov, K. A. Applying spectral form of mathematical description for representation of iterated stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 4, 1-31 (In Russ. ) Available at: https://diffjournal.spbu.ru/EN/numbers/2019.4/article.1.1.html
- Tang, X., Xiao, A. Asymptotically optimal approximation of some stochastic integrals and its applications to the strong second-order methods. Adv. Comp. Math. 45 (2019), 813-846
- Zahri, M. Multidimensional Milstein scheme for solving a stochastic model for prebiotic evolution. J. of Taibah Univ. for Science. 8, 2 (2014), 186-198
- Li, C. W., Liu, X. Q. Approximation of multiple stochastic integrals and its application to stochastic differential equations. Nonlinear Anal. Theor. Meth. Appl. 30, 2 (1997), 697-708
- Rybakov, K. Application of Walsh series to represent iterated Stratonovich stochastic integrals. IOP Conference Series: Materials science and engineering. 2020, vol. 927, id 012080. DOI: http://doi.org/10.1088/1757-899X/927/1/012080
- Rybakov, K. A. Modeling and analysis of output processes of linear continuous stochastic systems based on orthogonal expansions of random functions. J. of Computer and SystemsSci. Int. 59, 3 (2020), 322-337. DOI: http://doi.org/10.1134/S1064230720030156
- Kuznetsov, D. F. Chislennoye integrirovanie stokhasticheskih differencial'nyh uravnenii. 2. [Numerical integration of stochastic differential equations. 2]. St. -Petersburg, Polytechnic Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
- Kuznetsov, D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencialnie Uravnenia i Protsesy Upravlenia, 1997, no. 1, 18-77 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
- Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys. , 59, 8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116
- Kuznetsov, D. F. Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 3, 18-62. Available at: http://diffjournal.spbu.ru/EN/numbers/2019.3/article.1.2.html
- Kuznetsov, D. F. Application of multiple Fourier-Legendre series to strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear stochastic partial differential equations. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 3, 129-162. Available at: https://diffjournal.spbu.ru/RU/numbers/2020.3/article.1.6.html
- Jentzen, A. and Rö ckner, M. A Milstein scheme for SPDEs. Foundations Comp. Math. 15, 2 (2015), 313-362
- Becker, S., Jentzen, A. and Kloeden, P. E. An exponential Wagner-Platen type scheme for SPDEs. SIAM J. Numer. Anal. 54, 4 (2016), 2389-2426
- Mishura, Y. S. and Shevchenko, G. M. Approximation schemes for stochastic differential equations in a Hilbert space. Theor. Prob. Appl. 51, 3 (2007), 442-458
- Bao, J., Reisinger, C., Renz, P., Stockinger, W. First order convergence of Milstein schemes for McKean equations and interacting particle systems. arXiv:2004. 03325v1 [math. PR], 2020, 27 pp. Available at: https://arxiv.org/abs/2004.03325
- Son, L. N., Tuan, A. H., Dung, T. N., Yin, G. Milstein-type procedures for numerical solutions of stochastic differential equations with Markovian switching. SIAM J. Numer. Anal. 55, 2 (2017), 953-979
- Sun, Y., Yang, J., Zhao, W. Ito-Taylor schemes for solving mean-field stochastic differential equations. Numer. Math. Theor. Meth. Appl. 10, 4 (2017), 798-828
- Higham, D. J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. , 43, 3 (2001), 525-546
- Cyganowski, S., Grune, L., Kloeden, P. E. Maple for stochastic differential equations. Theory and numerics of differential equations, Eds. Blowey, J. F., Coleman, J. P., Craig, A. W. Universitext. Berlin, Heidelberg , Springer Publ., 2001, pp. 127-177
- Higham, D. J., Kloeden, P. E. MAPLE and MATLAB for stochastic differential equations in finance. Programming languages and systems in computational economics and finance. Advances in computational economics, vol 18, Ed. Nielsen, S. S. Boston, MA, Springer Publ., 2002, pp. 233-269
- Cyganowski, S., Grune, L., Kloeden P. E. MAPLE for jump-diffusion stochastic differential equations in finance. Programming languages and systems in computational economics and finance. Advances in computational economics, vol. 18, Ed. Nielsen, S. S. Boston, MA, Springer Publ., 2002, pp. 441-460
- Gilsing, H., Shardlow, T. SDELab: A package for solving stochastic differential equations in MATLAB. J. Comp. Appl. Math. , 2, 205 (2007), 1002-1018
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 3-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs. 3rd Ed. ]. St. -Petersburg, Polytechnic Univ. Publ., 2009. 768 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-230
- Kiesewetter, S., Polkinghorne, R., Opanchuk, B., Drummond, P. D. xSPDE: Extensible software for stochastic equations. SoftwareX, 5 (2016), 12-15
- Gevorkyan, M. N., Velieva, T. R., Korolkova, A. V., Kulyabov, D. S., Sevastyanov, L. A. Stochastic Runge-Kutta software package for stochastic differential equations. Dependability engineering and complex systems. DepCoS-RELCOMEX 2016. Advances in intelligent systems and computing, vol. 470, Eds. Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. Cham, Springer Publ., 2016, pp. 169-179
- Kuznetsov, D. F. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB programs. 6-th Ed. ]. Differencialnie Uravnenia i Protsesy Upravlenia, 2018, no. 4, A. 1-A. 1073 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/2018.4/article.2.1.html
- Kulchitskiy, O. Yu., Kuznetsov, D. F. Numerical simulation of stochastic systems of linear stationary differential equations. [In Russian]. Differencialnie Uravnenia i Protsesy Upravlenia, 1998, no. 1, 41-65. Available at: https://diffjournal.spbu.ru/EN/numbers/1998.1/article.1.2.html
- Gihman, I. I., Skorohod, A. V. Stokhasticheskie differencial’nye uravnenia i ih prilozhenia [Stochastic differential equations and its applications]. Kiev, Naukova Dumka Publ., 1982. 612 p
- Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automat. Remote Control, 79, 7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
- Kuznetsov, D. F. On Numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automat. Remote Control, 80, 5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
- Kuznetsov, D. F. Explicit one-step numerical method with the strong convergence order of 2.5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor-Stratonovich expansion. Comp. Math. Math. Phys. 60, 3 (2020), 379-389. DOI: http://doi.org/10.1134/S0965542520030100
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (In English). arXiv:2003. 14184 [math. PR]. 2020, 652 p. Available at: https://arxiv.org/abs/2003.14184
- Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. St. -Petersburg, Polytechnic Univ. Publ., 2013. 382 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-234
- Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals based on generalized multiple Fourier series. Ufa Math. J. , 11, 4 (2019), 49-77. DOI: http://doi.org/10.13108/2019-11-4-49
- Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. , 58, 7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
- Kuznetsov, D. F. Mean square approximation of solutions of stochastic differential equations using Legendre’s polynomials. J. Automat. Inform. Sciences (Begell House), 32, 12 (2000), 69-86. DOI: http://doi.org/10.1615/JAutomatInfScien.v32.i12.80
- Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas. Differencialnie Uravnenia i Protsesy Upravlenia. 2017, no. 1, A. 1-A. 385. Available at: http://diffjournal.spbu.ru/EN/numbers/2017.1/article.2.1.html
- Kuznetsov, M. D., Kuznetsov, D. F. Optimization of the mean-square approximation procedures for iterated Ito stochastic integrals of multiplicities 1 to 5 from the unified Taylor-Ito expansion based on multiple Fourier-Legendre series. (In English). arXiv:2010. 13564 [math. PR], 2020, 59 p. Available at: https://arxiv.org/abs/2010.13564
- Kuznetsov, M. D., Kuznetsov, D. F. Implementation of strong numerical methods of orders 0. 5, 1. 0, 1. 5, 2. 0, 2. 5, and 3. 0 for Ito SDEs with non-commutative noise based on the unified Taylor-Ito and Taylor-Stratonovich expansions and multiple Fourier-Legendre series. (In English). arXiv:2009. 14011 [math. PR], 2020, 188 p. Available at: https://arxiv.org/abs/2009.14011
- Kuznetsov, D. F., Kuznetsov, M. D. A software package for implementation of strong numerical methods of convergence orders 0. 5, 1. 0, 1. 5, 2. 0, 2. 5, and 3. 0 for Ito SDEs with non-commutative multi-dimensional noise. 19th Int. Conf. " Aviation and Cosmonautics" (AviaSpace-2020), Abstracts, Moscow, Pero Publ., 2020, 569-570
- Kuznetsov, D. F., Kuznetsov, M. D. Mean-square approximation of iterated stochastic integrals from strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs based on multiple Fourier-Legendre series. Springer proceedings in mathematics & statistics. Recent developments in stochastic methods and applications. Eds. Shiryaev, A. N. Samouylov, K. E, Kozyrev, D. V., Springer Publ., 2021 (to appear)