ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Дифференциальные Уравнения
и
Процессы Управления

The Proof of Convergence with Probability 1 in the Method of Expansion of Iterated Ito Stochastic Integrals Based on Generalized Multiple Fourier Series

Автор(ы):

Dmitriy Feliksovich Kuznetsov

Peter the Great Saint-Petersburg Polytechnic University
195251, Saint-Petersburg, Polytechnicheskaya ul., 29
Department of Higher Mathematics
Dr. Sci., Professor

sde_kuznetsov@inbox.ru

Аннотация:

The article is devoted to the formulation and proof of the theorem on convergence with probability 1 of expansion of iterated Ito stochastic integrals of arbitrary multiplicity based on generalized multiple Fourier series converging in the sense of norm in Hilbert space. The cases of multiple Fourier-Legendre series and multiple trigonomertic Fourier series are considered in detail. The proof of the mentioned theorem is based on the general properties of multiple Fourier series as well as on the estimate for the fourth moment of approximation error in the method of expansion of iterated Ito stochastic integrals based on generalized multiple Fourier series.

Ключевые слова

Ссылки:

  1. Milstein, G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ., 1988. 225 p
  2. Kloeden, P. E., Platen, E., Wright, I. W. The approximation of multiple stochastic integrals. Stoch. Anal. Appl. 10: 4 (1992), 431-441
  3. Kloeden, P. E., Platen, E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
  4. Kloeden, P. E., Platen, E., Schurz, H. Numerical solution of SDE through computer experiments. Berlin, Springer-Verlag Publ., 1994. 292 p
  5. Gaines, J. G., Lyons, T. J. Random generation of stochastic area integrals. SIAM J. Appl. Math. 54 (1994), 1132-1146
  6. Averina, T. A., Prigarin, S. M. Calculation of stochastic integrals of Wiener processes. Preprint 1048. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences., 1995, 15 pp. (In Russ. )
  7. Kuznetsov, D. F. Metody chislennogo modelirovanija reshenii system stokhasticheskih differencial'nyh uravnenii Ito v zadachah mekhaniki. Kand. Diss. [Methods of numerical simulation of stochastic differential Ito equations solutions in problems of mechanics. Ph. D. ], St. -Petersburg, 1996. 260 p
  8. Kuznetsov, D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencial’nie uravnenia i processy upravlenia, 1997, no. 1, 18-77 (In Russ. ). Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
  9. Kuznetsov, D. F. [Some problems of the theory of numerical solution of Ito stochastic differential equations]. Differencial’nie uravnenia i processy upravlenia, 1998, no. 1, 66-367. (In Russ. ). Available at: http://diffjournal.spbu.ru/EN/numbers/1998.1/article.1.3.html
  10. Prigarin, S. M., Belov, S. M. One application of series expansions of Wiener process. Preprint 1107. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences, 1998, 16 p. (In Russ. )
  11. Wiktorsson, M. Joint characteristic function and simultaneous simulation of iterated Ito integrals for multiple independent Brownian motions. Ann. Appl. Prob. 11:2 (2001), 470-487
  12. Ryden, T., Wiktorsson, M. On the simulation of iterated Ito integrals. Stoch. Proc. and their Appl. , 91:1 (2001), 151-168
  13. Milstein, G. N., Tretyakov, M. V. Stochastic numerics for mathematical physics. Berlin, Springer-Verlag Publ., 2004. 596 p
  14. Kuznetsov, D. F. Chislennoye integrirovanie stokhasticheskih differencial'nyh uravnenii. 2. [Numerical integration of stochastic differential equations. 2. ]. St. -Petersburg, Polytechn. Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
  15. Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. . S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 2-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs . 2nd Ed. ], St. -Petersburg, Polytechnic Univ. Publ., 2007, 770 p. DOI: http://doi.org/10 18720/SPBPU/2/s17-229
  16. Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 3-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs. 3rd Ed. ], St. -Petersburg, Polytechnic Univ. Publ., 2009, 768 p. DOI: http://doi.org/10 18720/SPBPU/2/s17-230
  17. Kuznetsov, D. F. [Multiple Stochastic Ito and Stratonovich Integrals and Multiple Fourier Serieses]. Differencial’nie uravnenia i processy upravlenia, 2010, no. 3, A. 1-A. 257 (In Russ. ). Available at: https://diffjournal.spbu.ru/EN/numbers/2010.3/article.2.1.html
  18. Platen, E., Bruti-Liberati, N. Numerical solution of stochastic differential equations with jumps in finance. Berlin, Heidelberg, Springer-Verlag Publ., 2010. 868 p
  19. Allen, E. Approximation of triple stochastic integrals through region subdivision. Commun. in Appl. Anal. (Special Tribute Issue to Professor V. Lakshmikantham), 17 (2013), 355-366
  20. Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. (In English). St. -Petersburg, Polytechn. Univ. Publ., 2013, 382 p. DOI: http://doi.org/10 18720/SPBPU/2/s17-234
  21. Zahri, M. Multidimensional Milstein scheme for solving a stochastic model for prebiotic evolution. J. of Taibah Univ. for Science. 8:2 (2014), 186-198
  22. Kuznetsov D. F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas. Differencial’nie uravnenia i processy upravlenia. 2017, no. 1, A. 1-A. 385 (In English). Available at: http://www.math.spbu.ru/diffjournal/pdf/kuznetsov_book2.pdf
  23. Kuznetsov, D. F. Stokhasticheskie differencial'nye uravneniya: teoriya i practika chislennogo resheniya. S programmami v srede MATLAB. Izd. 6-e. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB programs. 6-th Ed. ]. Differencial'nie uravnenia i processy upravlenia. 2018, no. 4, A. 1-A. 1073 (In Russ. ). Available at: http://diffjournal.spbu.ru/RU/numbers/2018.4/article.2.1.html
  24. Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. , 58:7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
  25. Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automat. Remote Control, 79:7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
  26. Kuznetsov, D. F. On Numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automat. Remote Control, 80:5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
  27. Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys., 59:8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116
  28. Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals, based on generalized multiple Fourier series. Ufa Math. J. , 11:4 (2019), 49-77. Available at: http://matem.anrb.ru/en/article?art\_id=604
  29. Kuznetsov, D. F. Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations. Differencial’nie uravnenia i processy upravlenia. 2019, no. 3, 18-62. Available at: http://diffjournal.spbu.ru/EN/numbers/2019.3/article.1.2.html
  30. Rybakov, K. A. Applying spectral form of mathematical description for representation of iterated stochastic integrals. Differencial’nie uravnenia i processy upravlenia, 2019, no. 4, 1-31. (In Russ. ). Available at: https://diffjournal.spbu.ru/EN/numbers/2019.4/article.1.1.html
  31. Kuznetsov D. F. Approximation of iterated Ito stochastic integrals of the second multiplicity based on the Wiener process expansion using Legendre polynomials and trigonometric functions. Differencial’nie uravnenia i processy upravlenia. 2019, no. 4, 32-52. (In Russ. ). Available at: https://diffjournal.spbu.ru/EN/numbers/2019.4/article.1.2.html
  32. Tang, X., Xiao, A. Asymptotically optimal approximation of some stochastic integrals and its applications to the strong second-order methods. Adv. Comp. Math. 45 (2019), 813-846
  33. Chugai K. N., Kosachev I. M., Rybakov K. A. Approximate filtering methods in continuous-time stochastic systems. Advances in Theory and Practice of Computational Mechanics. Ed. by L. C. Jain, M. N. Favorskaya, I. S. Nikitin, and D. L. Reviznikov. Springer Publ., 2020, 351-371. DOI: https://doi.org/10.1007/978-981-15-2600-8_24
  34. Rybakov K. A. Modeling and analysis of output processes of linear continuous stochastic systems based on orthogonal expansions of random functions. J. of Computer and Systems Sci. Int. 59, 3 (2020), 322-337. DOI: https://doi.org/10.1134/S1064230720030156
  35. Kuznetsov D. F. Explicit one-step numerical method with the strong convergence order of 2. 5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor-Stratonovich expansion. Comp. Math. Math. Phys. 60, 3 (2020), 379-389. DOI: https://doi.org/10.1134/S0965542520030100
  36. Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (In English). arXiv:2003. 14184 [math. PR], 2020, 581 p. Available at: https://arxiv.org/abs/2003.14184
  37. Suetin P. K. Klassicheskije ortogonal'nye mnogochleny. Izd 3-e. [Classical orthogonal polynomials. 3rd Ed. ]. Moskow, Fizmatlit, 2005. 480 p
  38. Shirjaev A. N. Veroyatnost’ [Probability]. Moscow , Nauka Publ., 1980. 574 p
  39. Il’in, V. A., Poznyak, E. G. Osnovy matematicheskogo analiza. Chast’ 1 [Foundations of mathematical analysis. Part I]. Moscow, Nauka Publ., 1967. 572 p
  40. Il'in, V. A., Poznyak, E. G. Osnovy matematicheskogo analiza. Chast’ 2 [Foundations of mathematical analysis. Part II]. Moscow, Nauka Publ., 1973. 448 p
  41. Hobson E. W. The theory of spherical and ellipsoidal harmonics. Cambridge, Cambridge Univ. Publ., 1931. 502 p

Полный текст (pdf)