The Proof of Convergence with Probability 1 in the Method of Expansion of Iterated Ito Stochastic Integrals Based on Generalized Multiple Fourier Series
Автор(ы):
Dmitriy Feliksovich Kuznetsov
Peter the Great Saint-Petersburg Polytechnic University
195251, Saint-Petersburg, Polytechnicheskaya ul., 29
Department of Higher Mathematics
Dr. Sci., Professor
sde_kuznetsov@inbox.ru
Аннотация:
The article is devoted to
the formulation and proof of the theorem on
convergence with probability 1 of
expansion of iterated Ito stochastic integrals of arbitrary
multiplicity
based on generalized multiple Fourier series
converging in the sense of norm in Hilbert space.
The cases of multiple Fourier-Legendre series
and multiple trigonomertic Fourier series
are considered in detail.
The proof of the mentioned theorem is based
on the general properties of multiple Fourier
series as well as on the estimate for the fourth
moment of approximation error in the
method of expansion of iterated Ito stochastic integrals
based on generalized multiple Fourier series.
Ключевые слова
- approximation
- convergence in the mean of arbitrary degree
- convergence with probability 1
- expansion
- generalized multiple Fourier series
- iterated Ito stochastic integral
- Legendre polynomials
- mean-square convergence
- multiple Fourier-Legendre series
- multiple trigonometric Fourier series
- Parseval equality
Ссылки:
- Milstein, G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ., 1988. 225 p
- Kloeden, P. E., Platen, E., Wright, I. W. The approximation of multiple stochastic integrals. Stoch. Anal. Appl. 10: 4 (1992), 431-441
- Kloeden, P. E., Platen, E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
- Kloeden, P. E., Platen, E., Schurz, H. Numerical solution of SDE through computer experiments. Berlin, Springer-Verlag Publ., 1994. 292 p
- Gaines, J. G., Lyons, T. J. Random generation of stochastic area integrals. SIAM J. Appl. Math. 54 (1994), 1132-1146
- Averina, T. A., Prigarin, S. M. Calculation of stochastic integrals of Wiener processes. Preprint 1048. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences., 1995, 15 pp. (In Russ. )
- Kuznetsov, D. F. Metody chislennogo modelirovanija reshenii system stokhasticheskih differencial'nyh uravnenii Ito v zadachah mekhaniki. Kand. Diss. [Methods of numerical simulation of stochastic differential Ito equations solutions in problems of mechanics. Ph. D. ], St. -Petersburg, 1996. 260 p
- Kuznetsov, D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencial’nie uravnenia i processy upravlenia, 1997, no. 1, 18-77 (In Russ. ). Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
- Kuznetsov, D. F. [Some problems of the theory of numerical solution of Ito stochastic differential equations]. Differencial’nie uravnenia i processy upravlenia, 1998, no. 1, 66-367. (In Russ. ). Available at: http://diffjournal.spbu.ru/EN/numbers/1998.1/article.1.3.html
- Prigarin, S. M., Belov, S. M. One application of series expansions of Wiener process. Preprint 1107. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences, 1998, 16 p. (In Russ. )
- Wiktorsson, M. Joint characteristic function and simultaneous simulation of iterated Ito integrals for multiple independent Brownian motions. Ann. Appl. Prob. 11:2 (2001), 470-487
- Ryden, T., Wiktorsson, M. On the simulation of iterated Ito integrals. Stoch. Proc. and their Appl. , 91:1 (2001), 151-168
- Milstein, G. N., Tretyakov, M. V. Stochastic numerics for mathematical physics. Berlin, Springer-Verlag Publ., 2004. 596 p
- Kuznetsov, D. F. Chislennoye integrirovanie stokhasticheskih differencial'nyh uravnenii. 2. [Numerical integration of stochastic differential equations. 2. ]. St. -Petersburg, Polytechn. Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. . S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 2-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs . 2nd Ed. ], St. -Petersburg, Polytechnic Univ. Publ., 2007, 770 p. DOI: http://doi.org/10 18720/SPBPU/2/s17-229
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 3-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs. 3rd Ed. ], St. -Petersburg, Polytechnic Univ. Publ., 2009, 768 p. DOI: http://doi.org/10 18720/SPBPU/2/s17-230
- Kuznetsov, D. F. [Multiple Stochastic Ito and Stratonovich Integrals and Multiple Fourier Serieses]. Differencial’nie uravnenia i processy upravlenia, 2010, no. 3, A. 1-A. 257 (In Russ. ). Available at: https://diffjournal.spbu.ru/EN/numbers/2010.3/article.2.1.html
- Platen, E., Bruti-Liberati, N. Numerical solution of stochastic differential equations with jumps in finance. Berlin, Heidelberg, Springer-Verlag Publ., 2010. 868 p
- Allen, E. Approximation of triple stochastic integrals through region subdivision. Commun. in Appl. Anal. (Special Tribute Issue to Professor V. Lakshmikantham), 17 (2013), 355-366
- Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. (In English). St. -Petersburg, Polytechn. Univ. Publ., 2013, 382 p. DOI: http://doi.org/10 18720/SPBPU/2/s17-234
- Zahri, M. Multidimensional Milstein scheme for solving a stochastic model for prebiotic evolution. J. of Taibah Univ. for Science. 8:2 (2014), 186-198
- Kuznetsov D. F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas. Differencial’nie uravnenia i processy upravlenia. 2017, no. 1, A. 1-A. 385 (In English). Available at: http://www.math.spbu.ru/diffjournal/pdf/kuznetsov_book2.pdf
- Kuznetsov, D. F. Stokhasticheskie differencial'nye uravneniya: teoriya i practika chislennogo resheniya. S programmami v srede MATLAB. Izd. 6-e. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB programs. 6-th Ed. ]. Differencial'nie uravnenia i processy upravlenia. 2018, no. 4, A. 1-A. 1073 (In Russ. ). Available at: http://diffjournal.spbu.ru/RU/numbers/2018.4/article.2.1.html
- Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. , 58:7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
- Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automat. Remote Control, 79:7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
- Kuznetsov, D. F. On Numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automat. Remote Control, 80:5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
- Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys., 59:8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116
- Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals, based on generalized multiple Fourier series. Ufa Math. J. , 11:4 (2019), 49-77. Available at: http://matem.anrb.ru/en/article?art\_id=604
- Kuznetsov, D. F. Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations. Differencial’nie uravnenia i processy upravlenia. 2019, no. 3, 18-62. Available at: http://diffjournal.spbu.ru/EN/numbers/2019.3/article.1.2.html
- Rybakov, K. A. Applying spectral form of mathematical description for representation of iterated stochastic integrals. Differencial’nie uravnenia i processy upravlenia, 2019, no. 4, 1-31. (In Russ. ). Available at: https://diffjournal.spbu.ru/EN/numbers/2019.4/article.1.1.html
- Kuznetsov D. F. Approximation of iterated Ito stochastic integrals of the second multiplicity based on the Wiener process expansion using Legendre polynomials and trigonometric functions. Differencial’nie uravnenia i processy upravlenia. 2019, no. 4, 32-52. (In Russ. ). Available at: https://diffjournal.spbu.ru/EN/numbers/2019.4/article.1.2.html
- Tang, X., Xiao, A. Asymptotically optimal approximation of some stochastic integrals and its applications to the strong second-order methods. Adv. Comp. Math. 45 (2019), 813-846
- Chugai K. N., Kosachev I. M., Rybakov K. A. Approximate filtering methods in continuous-time stochastic systems. Advances in Theory and Practice of Computational Mechanics. Ed. by L. C. Jain, M. N. Favorskaya, I. S. Nikitin, and D. L. Reviznikov. Springer Publ., 2020, 351-371. DOI: https://doi.org/10.1007/978-981-15-2600-8_24
- Rybakov K. A. Modeling and analysis of output processes of linear continuous stochastic systems based on orthogonal expansions of random functions. J. of Computer and Systems Sci. Int. 59, 3 (2020), 322-337. DOI: https://doi.org/10.1134/S1064230720030156
- Kuznetsov D. F. Explicit one-step numerical method with the strong convergence order of 2. 5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor-Stratonovich expansion. Comp. Math. Math. Phys. 60, 3 (2020), 379-389. DOI: https://doi.org/10.1134/S0965542520030100
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (In English). arXiv:2003. 14184 [math. PR], 2020, 581 p. Available at: https://arxiv.org/abs/2003.14184
- Suetin P. K. Klassicheskije ortogonal'nye mnogochleny. Izd 3-e. [Classical orthogonal polynomials. 3rd Ed. ]. Moskow, Fizmatlit, 2005. 480 p
- Shirjaev A. N. Veroyatnost’ [Probability]. Moscow , Nauka Publ., 1980. 574 p
- Il’in, V. A., Poznyak, E. G. Osnovy matematicheskogo analiza. Chast’ 1 [Foundations of mathematical analysis. Part I]. Moscow, Nauka Publ., 1967. 572 p
- Il'in, V. A., Poznyak, E. G. Osnovy matematicheskogo analiza. Chast’ 2 [Foundations of mathematical analysis. Part II]. Moscow, Nauka Publ., 1973. 448 p
- Hobson E. W. The theory of spherical and ellipsoidal harmonics. Cambridge, Cambridge Univ. Publ., 1931. 502 p