Mean-square Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Integration of Ito Sdes and Semilinear Spdes (third Edition)
Автор(ы):
Dmitriy Feliksovich Kuznetsov
Peter the Great Saint-Petersburg Polytechnic University
195251, Saint-Petersburg, Polytechnicheskaya ul., 29
Department of Higher Mathematics
Dr. Sc., Professor
sde_kuznetsov@inbox.ru
Аннотация:
This is the third edition of the monograph (first edition 2020, second edition 2021)
devoted to the problem of mean-square approximation of iterated Ito and
Stratonovich stochastic integrals with respect to components of the multidimensional
Wiener process. The mentioned problem is considered in the book as applied to
the numerical integration of non-commutative Ito stochastic differential equations and
semilinear stochastic partial differential equations with nonlinear non-commutative
trace class noise. The book opens up a new direction in researching
of iterated stochastic integrals. For the first time we use the generalized
multiple Fourier series converging in the sense of norm in Hilbert space for the
expansion of iterated Ito stochastic integrals of arbitrary multiplicity k
with respect to components of the multidimensional Wiener process (Chapter 1).
Sections 1.11-1.13 (Chapter 1) are new and generalize the results of
Chapter 1 obtained earlier by the author and are also closely related to
the multiple Wiener stochastic integral introduced by Ito in 1951.
The convergence with probability 1 as well as the convergence in the
sense of n-th (n=2, 3,...) moment for the expansion of iterated Ito stochastic integrals
have been proved (Chapter 1). Moreover, the rate of both types of convergence
has been established. The main difference between the third and second editions of the
book is that the third edition includes original material (Chapter 2, Sections 2.10-2.19)
on a new approach to the series expansion of iterated Stratonovich stochastic
integrals of arbitrary multiplicity k with respect to components of the
multidimensional Wiener process. The above approach allowed us to generalize
some of the author's earlier results and also to make significant progress in
solving the problem of series expansion of iterated Stratonovich stochastic integrals.
In particular, for iterated Stratonovich stochastic integrals of the fifth and sixth
multiplicity, series expansions based on multiple Fourier-Legendre series and multiple
trigonometric Fourier series are obtained. In addition, expansions of iterated
Stratonovich stochastic integrals of multiplicities 2 to 4 were generalized.
These results (Chapter 2) adapt the results of Chapter 1 for iterated Stratonovich
stochastic integrals. Two theorems on expansion of iterated Stratonovich
stochastic integrals of arbitrary multiplicity k based on generalized iterated
Fourier series with pointwise convergence are formulated and proved (Chapter 2).
The results of Chapters 1 and 2 can be considered from the point of view of the Wong-Zakai
approximation for the case of a multidimensional Wiener process and the Wiener process
approximation based on its series expansion using Legendre polynomials and trigonometric
functions. The integration order replacement technique for iterated Ito stochastic integrals
has been introduced (Chapter 3). Exact expressions are obtained for the mean-square
approximation error of iterated Ito stochastic integrals of arbitrary multiplicity k
(Chapter 1) and iterated Stratonovich stochastic integrals of multiplicities 1 to 4
(Chapter 5). Furthermore, we provided a significant practical material (Chapter 5) devoted
to the expansions and mean-square approximations of specific iterated Ito and Stratonovich
stochastic integrals of multiplicities 1 to 6 from the unified Taylor-Ito and
Taylor-Stratonovich expansions (Chapter 4). These approximations were obtained using Legendre
polynomials and trigonometric functions. The methods constructed in the book
have been compared with some existing methods (Chapter 6). The results of Chapter 1 were
applied (Chapter 7) to the approximation of iterated stochastic integrals with respect
to the finite-dimensional approximation of the Q-Wiener process (for integrals of
multiplicity k) and with respect to the infinite-dimensional Q-Wiener process (for integrals
of multiplicities 1 to 3).
Ключевые слова
- approximation in the sense of n-th moment
- approximation with probability 1
- convergence in the sense of norm in Hilbert space
- expansion
- exponential Milstein scheme
- exponential Wagner-Platen scheme
- generalized iterated Fourier series
- generalized multiple Fourier series
- high-order strong numerical method
- Hilbert-Schmidt operator
- infinite-dimensional Q-Wiener process
- iterated Ito stochastic integral
- iterated Stratonovich stochastic integral
- Ito stochastic differential equation
- Legendre polynomials
- mean-square approximation
- multi-dimensional Wiener process
- multiple Fourier-Legendre series
- multiple trigonometric Fourier series
- non-commutative semilinear stochastic partial differential equation
- nonlinear multiplicative trace class noise
- Parseval equality
- stochastic Ito-Taylor expansion
- stochastic Stratonovich-Taylor expansion
- trace class operator
Ссылки:
- Kuznetsov, D. F. Chislennoye integrirovanie stokhasticheskih differencial'nyh uravnenii. 2. [Numerical integration of stochastic differential equations. 2]. St. -Petersburg, Polytechnic Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmoi dl’ja PC v sisteme MATLAB 7. 0. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 program]. St. -Petersburg, Polytechnic Univ. Publ., 2007. 778 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-228
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 2-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs. 2nd Ed. ]. St. -Petersburg, Polytechnic Univ. Publ., 2007. xxxii+770 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-229
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 3-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs. 3rd Ed. ]. St. -Petersburg, Polytechnic Univ. Publ., 2009. xxxiv+768 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-230
- Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. . S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 4-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs. 4th Ed. ]. St. -Petersburg, Polytechnic Univ. Publ., 2010. xxx+786 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-231
- Kuznetsov, D. F. [Multiple Stochastic Ito and Stratonovich Integrals and Multiple Fourier Series]. Differencialnie Uravnenia i Protsesy Upravlenia, 2010, no. 3, A. 1-A. 257 (In Russ. ) Available at: https://diffjournal.spbu.ru/EN/numbers/2010.3/article.2.1.html
- Kuznetsov, D. F. Strong approximation of multiple Ito and Stratonovich stochastic integrals: multiple Fourier series approach. St. -Petersburg, Polytechnic Univ. Publ., 2011. 250 p. (In English). DOI: http://doi.org/10.18720/SPBPU/2/s17-232
- Kuznetsov, D. F. Strong approximation of multiple Ito and Stratonovich stochastic integrals: multiple Fourier series approach. 2nd Ed. St. -Petersburg, Polytechnic Univ. Publ., 2011. 284 p. (In English). DOI: http://doi.org/10.18720/SPBPU/2/s17-233
- Kuznetsov, D. F. Approximation of Multiple Ito and Stratonovich Stochastic Integrals. Multiple Fourier Series Approach. Saarbrü cken, Lambert Academic Publ., 2012. 409 p. (In English). Available at: http://www.sde-kuznetsov.spb.ru/12a.pdf
- Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. St. -Petersburg, Polytechnic Univ. Publ., 2013. 382 p. (In English). DOI: http://doi.org/10.18720/SPBPU/2/s17-234
- Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas. Differencialnie Uravnenia i Protsesy Upravlenia, 2017, no. 1, A. 1-A. 385 (In English) Available at: http://diffjournal.spbu.ru/EN/numbers/2017.1/article.2.1.html
- Kuznetsov, D. F. [Stochastic differential equations: theory and practice of numerical solution. With programs on MATLAB. 5-th Ed. ]. Differencialnie Uravnenia i Protsesy Upravlenia, 2017, no. 2, A. 1-A. 1000 (In Russ. ) Available at: https://diffjournal.spbu.ru/EN/numbers/2017.2/article.2.1.html
- Kuznetsov, D. F. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB programs. 6-th Ed. ]. Differencialnie Uravnenia i Protsesy Upravlenia, 2018, no. 4, A. 1-A. 1073 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/2018.4/article.2.1.html
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. Differencialnie Uravnenia i Protsesy Upravlenia. 2020, no. 4, A. 1-A. 606 (In English) Available at: http://diffjournal.spbu.ru/EN/numbers/2020.4/article.1.8.html
- Kuznetsov, D. F. Mean-Square Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series. Application to Numerical Integration of Ito SDEs and Semilinear SPDEs. Differencialnie Uravnenia i Protsesy Upravlenia. 2021, no. 4, A. 1-A. 788 (In English) Available at: http://diffjournal.spbu.ru/EN/numbers/2021.4/article.1.9.html
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (In English). arXiv:2003. 14184 [math. PR]. 2023, 947 p. Available at: https://arxiv.org/abs/2003.14184
- Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. , 58, 7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
- Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automat. Remote Control, 79, 7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
- Kuznetsov, D. F. On Numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automat. Remote Control, 80, 5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
- Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys. , 59, 8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116
- Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals based on generalized multiple Fourier series. Ufa Math. J. , 11, 4 (2019), 49-77. DOI: http://doi.org/10.13108/2019-11-4-49
- Kuznetsov, D. F. Explicit one-step numerical method with the strong convergence order of 5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor-Stratonovich expansion. Comp. Math. Math. Phys. 60, 3 (2020), 379-389. DOI: http://doi.org/10.1134/S0965542520030100
- Kuznetsov, D. F. Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 3, 18-62 (In English) Available at: http://diffjournal.spbu.ru/EN/numbers/2019.3/article.1.2.html
- Kuznetsov, D. F. Application of multiple Fourier-Legendre series to strong exponentialMilstein and Wagner-Platen methods for non-commutative semilinear stochastic partial differential equations. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 3, 129-162 (In English) Available at: https://diffjournal.spbu.ru/RU/numbers/2020.3/article.1.6.html
- Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals. Abstracts of talks given at the 4th International Conference on Stochastic Methods. Theory Prob. Appl. , 65, 1 (2020), 141-142 (In English). DOI: http://doi.org/10.1137/S0040585X97T989878
- Kuznetsov, D. F. The proof of convergence with probability 1 in the method of expansionof iterated Ito stochastic integrals based on generalized multiple Fourier series. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 2, 89-117 (In English) Available at: http://diffjournal.spbu.ru/RU/numbers/2020.2/article.1.6.html
- Kuznetsov, D. F. [Expansion of multiple Stratonovich stochastic integrals of second multiplicity, based on double Fourier-Legendre series summarized by Prinsheim method]. Differencialnie Uravnenia i Protsesy Upravlenia, 2018, no. 1, 1-34 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/2018.1/article.1.1.html
- Kuznetsov, D. F. Expansion of iterated Ito stochastic integrals of arbitrary multiplicity based on generalized multiple Fourier series converging in the mean. (In English). arXiv:1712. 09746 [math. PR]. 2022, 111 p. Available at: https://arxiv.org/abs/1712.09746
- Kuznetsov, D. F. Development and application of the Fourier method to the mean-square approximation of iterated Ito and Stratonovich stochastic integrals. (In English). arXiv:1712. 08991 [math. PR]. 2022, 57 p. Available at: https://arxiv.org/abs/1712.08991
- Kuznetsov, D. F. Exact calculation of the mean-square error in the method of approximation of iterated Ito stochastic integrals, based on generalized multiple Fourier series. (In English). arXiv:1801. 01079 [math. PR]. 2018, 68 p. Available at: https://arxiv.org/abs/1801.01079
- Kuznetsov, D. F. Mean-square approximation of iterated Ito and Stratonovich stochastic integrals of multiplicities 1 to 6 from the Taylor-Ito and Taylor-Stratonovich expansions using Legendre polynomials. (In English). arXiv:1801. 00231 [math. PR]. 2017, 106 p. Available at: https://arxiv.org/abs/1801.00231
- Kuznetsov, D. F. Expansions of Iterated Stratonovich stochastic integrals based on generalized multiple Fourier series: multiplicities 1 to 6 and beyond. (In English). arXiv:1712. 09516 [math. PR]. 2022, 219 p. Available at: https://arxiv.org/abs/1712.09516
- Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity based on generalized iterated Fourier series converging pointwise. (In English). arXiv:1801. 00784 [math. PR]. 2018, 77 p. Available at: https://arxiv.org/abs/1801.00784
- Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals of multiplicity 3 based on generalized multiple Fourier series converging in the mean: general case of series summation. (In English). arXiv:1801. 01564 [math. PR]. 2018, 66 p. Available at: https://arxiv.org/abs/1801.01564
- Kuznetsov, D. F. Expansions of iterated Stratonovich stochastic integrals of multiplicities 1 to 4. Combined approach based on generalized multiple and iterated Fourier series. (In English). arXiv:1801. 05654 [math. PR]. 2018, 46 p. Available at: https://arxiv.org/abs/1801.05654
- Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals of multiplicity 2. Combined approach based on generalized multiple and iterated Fourier series. (In English). arXiv:1801. 07248 [math. PR]. 2018, 20 p. Available at: https://arxiv.org/abs/1801.07248
- Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals of fifth and sixth multiplicity based on generalized multiple Fourier series. (In English). arXiv:1802. 00643 [math. PR]. 2022, 145 p. Available at: https://arxiv.org/abs/1802.00643
- Kuznetsov, D. F. The hypotheses on expansions of iterated Stratonovich stochastic integrals of arbitrary multiplicity and their partial proof. (In English). arXiv:1801. 03195 [math. PR]. 2022, 156 p. Available at: https://arxiv.org/abs/1801.03195
- Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. (In English). arXiv:1901. 02345 [math. GM]. 2019, 40 p. Available at: https://arxiv.org/abs/1901.02345
- Kuznetsov, D. F. Expansion of iterated stochastic integrals with respect to martingale Poisson measures and with respect to martingales based on generalized multiple Fourier series. (In English). arXiv:1801. 06501 [math. PR]. 2018, 40 p. Available at: https://arxiv.org/abs/1801.06501
- Kuznetsov, D. F. To numerical modeling with strong orders 1. 0, 1. 5, and 2. 0 of convergence for multidimensional dynamical systems with random disturbances. (In English). arXiv:1802. 00888 [math. PR]. 2018, 29 p. Available at: https://arxiv.org/abs/1802.00888
- Kuznetsov, D. F, Numerical simulation of 2. 5-set of iterated Stratonovich stochastic integrals of multiplicities 1 to 5 from the Taylor-Stratonovich expansion. (In English). arXiv:1806. 10705[math. PR]. 2018, 29 p. Available at: https://arxiv.org/abs/1806.10705
- Kuznetsov, D. F, Numerical simulation of 2. 5-set of iterated Ito stochastic integrals of multiplicities 1 to 5 from the Taylor-Ito expansion. (In English). arXiv:1805. 12527 [math. PR]. 2018, 29 p. Available at: https://arxiv.org/abs/1805.12527
- Kuznetsov, D. F. Explicit one-step strong numerical methods of orders 2. 0 and 2. 5 for Ito stochastic differential equations based on the unified Taylor-Ito and Taylor-Stratonovich expansions. (In English). arXiv:1802. 04844 [math. PR]. 2018, 37 p. Available at: https://arxiv.org/abs/1802.04844
- Kuznetsov, D. F. Strong numerical methods of orders 2. 0, 2. 5, and 3. 0 for Ito stochastic differential equations based on the unified stochastic Taylor expansions and multiple Fourier-Legendre series. (In English). arXiv:1807. 02190 [math. PR]. 2018, 44 p. Available at: https://arxiv.org/abs/1807.02190
- Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals of multiplicity 2 based on double Fourier-Legendre series summarized by Pringsheim method. (In English). arXiv:1801. 01962 [math. PR]. 2018, 49 p. Available at: https://arxiv.org/abs/1801.01962
- Kuznetsov, D. F. Application of the method of approximation of iterated Ito stochastic integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations. (In English). arXiv:1905. 03724 [math. GM]. 2019, 41 p. Available at: https://arxiv.org/abs/1905.03724
- Kuznetsov, D. F. Application of multiple Fourier-Legendre series to implementation of strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear stochastic partial differential equations. (In English). arXiv:1912. 02612 [math. PR]. 2019, 32 p. Available at: https://arxiv.org/abs/1912.02612
- Kuznetsov, D. F. Expansions of iterated Stratonovich stochastic integrals from the Taylor-Stratonovich expansion based on multiple trigonometric Fourier series. Comparison with the Milstein expansion. (In English). arXiv:1801. 08862 [math. PR]. 2018, 36 p. Available at: https://arxiv.org/abs/1801.08862
- Kuznetsov, D. F. New simple method of expansion of iterated Ito stochastic integrals of multiplicity 2 based on expansion of the Brownian motion using Legendre polynomials and trigonometric functions. (In English). arXiv:1807. 00409 [math. PR], 2019, 23 p. Available at: https://arxiv.org/abs/1807.00409
- Kuznetsov, D. F. Four new forms of the Taylor-Ito and Taylor-Stratonovich expansions and its application to the high-order strong numerical methods for Ito stochastic differential equations. (In English). arXiv:2001. 10192 [math. PR], 2020, 90 p. Available at https://arxiv.org/abs/2001.10192
- Kuznetsov, M. D., Kuznetsov, D. F. SDE-MATH: A software package for the implementation of strong high-order numerical methods for Ito SDEs with multidimensional non-commutative noise based on multiple Fourier-Legendre series. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 1, 93-422 (In English) Available at: http://diffjournal.spbu.ru/EN/numbers/2021.1/article.1.5.html
- Kuznetsov, M. D., Kuznetsov, D. F. Implementation of strong numerical methods of orders 0. 5, 1. 0, 1. 5, 2. 0, 2. 5, and 3. 0 for Ito SDEs with non-commutative noise based on the unified Taylor-Ito and Taylor-Stratonovich expansions and multiple Fourier-Legendre series. (In English). arXiv:2009. 14011 [math. PR], 2020, 343 p. Available at: https://arxiv.org/abs/2009.14011
- Kuznetsov, M. D., Kuznetsov, D. F. Optimization of the mean-square approximation procedures for iterated Ito stochastic integrals of multiplicities 1 to 5 from the unified Taylor-Ito expansion based on multiple Fourier-Legendre series. (In English). arXiv:2010. 13564 [math. PR], 2020, 63 p. Available at: https://arxiv.org/abs/2010.13564
- Kuznetsov, D. F., Kuznetsov, M. D. Optimization of the mean-square approximation procedures for iterated Ito stochastic integrals based on multiple Fourier-Legendre series. J. Phys. : Conf. Series. 1925, 1 (2021), article id: 012010, 12 p. DOI: http://doi.org/10.1088/1742-6596/1925/1/012010
- Kuznetsov, D. F. Application of multiple Fourier-Legendre series to the implementation of strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs. Proc. of the XIII Int. Conf. on Appl. Math. and Mech. in the Aerospace Ind. (AMMAI-2020). Moscow, MAI Publ., 2020, 451-453. Available at: http://www.sde-kuznetsov.spb.ru/20e.pdf
- Kuznetsov, D. F., Kuznetsov, M. D. Mean-square approximation of iterated stochastic integrals from strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs based on multiple Fourier-Legendre series. Recent developments in stochastic methods and applications. ICSM-5 2020. Springer Proceedings in Mathematics & Statistics, vol 371, Ed. Shiryaev, A. N., Samouylov, K. E., Kozyrev, D. V. Cham, Springer Publ., 2021, pp. 17-32. DOI: https://doi.org/10.1007/978-3-030-83266-7_2
- Kuznetsov, D. F. The proof of convergence with probability 1 in the method of expansion of iterated Ito stochastic integrals based on generalized multiple Fourier series. (In English). arXiv:2006. 16040 [math. PR], 2020, 33 p. Available at: https://arxiv.org/abs/2006.16040
- Kuznetsov, D. F., Kuznetsov, M. D. A software package for implementation of strong numerical methods of convergence orders 0. 5, 1. 0, 1. 5, 2. 0, 2. 5, and 3. 0 for Ito SDEs with non-commutative multi-dimensional noise. Abstracts of the 19th Int. Conf. Aviation and Cosmonautics (AviaSpace-2020). Moscow, Pero Publ., 2020, 569-570. Available at: http://www.sde-kuznetsov.spb.ru/20h.pdf
- Kuznetsov, D. F. Application of multiple Fourier-Legendre series to the implementation of strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs with nonlinear multiplicative trace class noise. Proc. of the 5th Int. Conf. on Stochastic Methods (ICSM-5). Moscow, RUDN Publ., 2020, 88-92. Available at: http://www.sde-kuznetsov.spb.ru/20i.pdf
- Kuznetsov, D. F. Application of the Fourier method for the numerical solution of stochastic differential equations. Abstracts of the 2nd Int. Conf. on Mathematical Modeling in Applied Sciences (ICMMAS 19). Belgorod State Univ. & Alpha-Publishing Publ., 2019, 236-237. Available at: http://www.sde-kuznetsov.spb.ru/19c.pdf
- Kuznetsov, D. F. Strong approximation of multiple Ito and Stratonovich stochastic integrals. Abstracts of the Int. Conf. on Mathematical Modeling in Applied Sciences(ICMMAS 17). St. -Petersburg, Polytechnic Univ. Publ., 2017, 141-142. Available at: http://www.sde-kuznetsov.spb.ru/17.pdf
- Kuznetsov, D. F. A new approach to the series expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity with respect to components of the multidimensional Wiener process. Differencialnie Uravnenia i Protsesy Upravlenia, 2022, no. 2, 83-186 (In English) Available at: http://diffjournal.spbu.ru/EN/numbers/2022.2/article.1.6.html
- Kuznetsov, D. F. A new approach to the series expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity with respect to components of the multidimensional Wiener process. II. Differencialnie Uravnenia i Protsesy Upravlenia, 2022, no. 4, 135-194 (In English) Available at: http://diffjournal.spbu.ru/EN/numbers/2022.4/article.1.9.html
- Kuznetsov, D. F., Kuznetsov, M. D. Optimization of the mean-square approximation procedures for iterated Stratonovich stochastic integrals of multiplicities 1 to 3 with respect to components of the multi-dimensional Wiener process based on Multiple Fourier-Legendre series. MATEC Web of Conferences, 362 (2022), article id: 01014, 10 p. DOI: http://doi.org/10.1051/matecconf/202236201014
- Kuznetsov, D. F. Approximation of iterated Ito stochastic integrals of the second multiplicity based on the Wiener process expansion using Legendre polynomials and trigonometric functions (In Russ). Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 4, 32-52 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/2019.4/article.1.2.html
- Clark J. M. C., Cameron R. J. The maximum rate of convergence of discrete approximations for stochastic differential equations. Stochastic Differential Systems Filtering and Control. Lecture Notes in Control and Information Sciences, vol 25. Ed. Grigelionis B. Berlin, Heidelberg, Springer Publ., 1980. 162-171
- Wong, E., Zakai, M. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat.. 36, 5 (1965), 1560-1564
- Wong, E., Zakai, M. On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3 (1965), 213-229
- Ikeda, N., Watanabe, S. Stochastic Differential Equations and Diffusion Processes. 2nd Ed. Amsterdam, Oxford, New-York, North-Holland Publishing Company, 1989. 555 p
- Kuznetsov, D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencialnie Uravnenia i Protsesy Upravlenia, 1997, no. 1, 18-77 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
- Kuznetsov, D. F. [Some problems of the theory of numerical solution of Ito stochastic differential equations]. Differencialnie Uravnenia i Protsesy Upravlenia, 1998, no. 1, 66-367 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/1998.1/article.1.3.html
- Kuznetsov, D. F. Mean square approximation of solutions of stochastic differential equations using Legendre’s polynomials. J. Automat. Inform. Sciences. 32, 12 (2000), 69-86. DOI: http://doi.org/10.1615/JAutomatInfScien.v32.i12.80
- Kuznetsov, D. F. New representations of explicit one-step numerical methods for jump diffusion stochastic differential equations. Comp. Math. Math. Phys. , 41, 6 (2001), 874-888 Available at: http://www.sde-kuznetsov.spb.ru/01b.pdf
- Kulchitsky, O. Yu., Kuznetsov, D. F. Approximation of multiple Ito stochastic integrals. VINITI, 1678-V94 (1994), 42 p. (In Russ. )
- Kuznetsov, D. F. Metody chislennogo modelirovanija reshenii system stokhasticheskih differencial'nyh uravnenii Ito v zadachah mekhaniki. Kand. Diss. [Methods of numerical simulation of stochastic differential Ito equations solutions in problems of mechanics. Ph. D. ], St. -Petersburg, 1996. 260 p
- Milstein G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ 225 p
- Kloeden, P. E., Platen, E., Wright, I. W. The approximation of multiple stochastic integrals. Stoch. Anal. Appl. 10, 4 (1992), 431-441
- Kloeden, P. E., Platen, E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
- Kloeden, P. E., Platen, E., Schurz, H. Numerical solution of SDE through computer experiments. Berlin, Springer-Verlag Publ., 1994. 292 p
- Averina, T. A., Prigarin, S. M. Calculation of stochastic integrals of Wiener processes. Preprint 1048. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences., 1995, 15 pp. (In Russ. )
- Prigarin, S. M., Belov, S. M. One application of series expansions of Wiener process. Preprint 1107. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences, 1998, 16 p. (In Russ. )
- Wiktorsson, M. Joint characteristic function and simultaneous simulation of iterated Ito integrals for multiple independent Brownian motions. Ann. Appl. Prob. 11, 2 (2001), 470-487
- Ryden, T., Wiktorsson, M. On the simulation of iterated Ito integrals. Stoch. Proc. and their Appl. , 91, 1 (2001), 151-168
- Gaines, J. G., Lyons, T. J. Random generation of stochastic area integrals. SIAM J. Appl. Math. 54 (1994), 1132-1146
- Gilsing, H., Shardlow, T. SDELab: A package for solving stochastic differential equations in MATLAB. J. Comp. Appl. Math. , 205 (2007), 1002-1018
- Milstein, G. N., Tretyakov, M. V. Stochastic numerics for mathematical physics. Berlin, Springer-Verlag Publ., 2004. xx+596 p
- Platen, E., Bruti-Liberati, N. Numerical solution of stochastic differential equations with jumps in finance. Berlin, Heidelberg, Springer-Verlag Publ., 2010. 868 p
- Allen, E. Approximation of triple stochastic integrals through region subdivision. Commun. Appl. Analysis (Special Tribute Issue to Professor V. Lakshmikantham), 17 (2013), 355-366
- Rybakov, K. A. Applying spectral form of mathematical description for representation of iterated stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 4, 1-31 (In Russ. ) Available at: https://diffjournal.spbu.ru/EN/numbers/2019.4/article.1.1.html
- Tang, X., Xiao, A. Asymptotically optimal approximation of some stochastic integrals and its applications to the strong second-order methods. Adv. Comp. Math. 45 (2019), 813-846
- Zahri, M. Multidimensional Milstein scheme for solving a stochastic model for prebiotic evolution. J. of Taibah Univ. for Science. 8, 2 (2014), 186-198
- Chernykh, N. V., Pakshin, P. V. Numerical solution algorithms for stochastic differential systems with switching diffusion. Autom. Remote Control. 74, 12 (2013), 2037-2063. DOI: https://doi.org/10.1134/S0005117913120072
- Li C. W., Liu X. Q. Approximation of multiple stochastic integrals and its application to stochastic differential equations. Nonlinear Anal. Theor. Meth. Appl. 30, 2 (1997), 697-708
- Gihman, I. I., Skorohod, A. V. Stokhasticheskie differencial’nye uravnenia [Stochastic differential equations]. Kiev, Naukova Dumka Publ., 1968. 354 p
- Gihman, I. I., Skorohod, A. V. Stokhasticheskie differencial’nye uravnenia i ih prilozhenia [Stochastic differential equations and its applications]. Kiev, Naukova Dumka Publ., 1982. 612 p
- Skorohod, A. V. Sluchainye protsesy s nezavisimymi proraschenyami [Stochastic processes with independent increments]. Moscow, Nauka Publ., 1964. 280 p
- Koroluk, V. S., Portenko, N. I., Skorohod, A. V., Turbin, A. F. Spravochnik po teorii veroyatnostei i matematicheskoi statistike [Handbook on the probability theory and mathematical statistics]. Moscow, Nauka Publ., 1985. 640 p
- Shiryaev, A. N. Probability. Springer-Verlag, New York, 1996. 624 p
- Kloeden, P. E., Neuenkirch, A. The pathwise convergence of approximation schemes for stochastic differential equations. LMS J. Comp. Math. 10 (2007), 235-253
- Ito, K. Multiple Wiener integral. J. Math. Soc. Japan. 3, 1 (1951), 157-169
- Rybakov, K. A. Orthogonal expansion of multiple Ito stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 3, 109-140 (In Russ. ) Available at: https://diffjournal.spbu.ru/EN/numbers/2021.3/article.1.8.html
- Chung, K. L., Williams, R. J. Introduction to stochastic integration. 2nd Ed. Probability and its Applications. Ed. Liggett T., Newman C., Pitt L. Boston, Basel, Berlin, Birkhauser Publ., 1990. 276 p
- Kuo, H. -H. Introduction to Stochastic Integration. Universitext (UTX). N. Y., Springer Publ., 2006. 289 p
- Stratonovich, R. L. Uslovnye markpvskie processy i ih primenenie k teorii optimal’nogo upravlenia [Conditional Markov’s processes and its application to the theory of optimal control]. Moscow, Moscow St. Univ. Publ, 1966. 320 p
- Hobson, E. W. The theory of spherical and ellipsoidal harmonics. Cambridge, Cambridge Univ. Press Publ., 1931. 502 p
- Rybakov, K. A. On the orthogonal expansion of the iterated Stratonovich stochastic integrals. Vestnik DSU. Series 1. Natural sci., 37, 2 (2022), 27-32 (In Russ. ) DOI: http://doi.org/10.21779/2542-0321-2022-37-2-27-32
- Starchenko, T. K. [About conditions of convergence of double Fourier-Legendre series]. Trudy inst. matematiki NAN Belarusi “Analiticheskije metody analiza i differencial'nyh uravnenii” [Proc. of the Mathematical inst. of NAS of Belarus “Analitical methods of analysis and differential equations”]. Minsk, 2005, no. 5, pp. 124-126. (in Russ. )
- Suetin, P. K. Klassicheskije ortogonal'nye mnogochleny. Izd 3-e. [Classical orthogonal polynomials. 3rd Ed. ]. Moskow, Fizmatlit, 2005. 480 p
- Il’in, V. A., Poznyak, E. G. Osnovy matematicheskogo analiza. Chast’ 2 [Foundations of mathematical analysis. Part II]. Moscow, Nauka Publ., 1973. 448 p
- Kuznetsov, D. F. Theorems about integration order replacement in multiple stochastic integrals. VINITI, 3607-V97 (1997), 31 p. (In Russ. )
- Kuznetsov, D. F. Integration order replacement technique for iterated Ito stochastic integrals and iterated stochastic integrals with respect to martingales. (In English). arXiv:1801. 04634 [math. PR]. 2018, 28 p. Available at: https://arxiv.org/abs/1801.04634
- Sjö lin, P. Convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. Mat. 9, 1-2 (1971), 65-90
- Liptser, R. Sh., Shirjaev, A. N. Statistika sluchainyh processov: nelineinaya filtracia i smezhnye voprosy. [Statistics of Stochastic Processes: Nonlinear Filtering and Related Problems. Moscow, Nauka Publ., 1974. 696 p
- Luo, W. Wiener chaos expansion and numerical solutions of stochastic partial differential equations. Ph. D., California Institute of Technology, 2006. 225 p
- Wong, E., Zakai, M. Riemann-Stieltjes approximations of stochastic integrals. Z. Warsch. Verw. Gebiete. 12 (1969), 87-97
- Ikeda, N., Nakao, S., Yamato, Y. A class of approximations of Brownian motion. Publ. RIMS Kyoto Univ. 13, 1 (1977), 285-300
- Koneczny, F. On the Wong-Zakai approximation of stochastic differential equations. J. Mult. Anal. 13 (1983), 605-611
- Karatzas, I., Shreve, S. E. Brownian Motion and Stochastic Calculus. 2nd Ed. N. Y., Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Springer-Verlag Publ., 1991. 470 p
- Mackevicius, V., Zibaitis, B. Gaussian approximations of Brownian motion in a stochastic integral. Lith. Math. J. 33 (1993), 393-406. DOI: http://doi.org/10.1007/BF00995993
- Twardowska, K. Wong-Zakai approximations for stochastic differential equations. Acta Appl. Math. 43 (1996), 317-359. DOI: http://doi.org/10.1007/BF00047670
- Gyö ngy, I., Michaletzky, G. On Wong-Zakai approximations with δ -martingales. Royal Soc. London Proc. Ser. 460, 2041 (2004), 309-324
- Gyö ngy, I., Shmatkov, A. Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations. Appl. Math. Optim. 54 (2006), 315-341
- Budhiraja, A. Multiple stochastic integrals and Hilbert space valued traces with applications to asymptotic statistics and non-linear filtering. Ph. D., The University of North Caroline at Chapel Hill, 1994. vii+132 p
- Budhiraja, A., Kallianpur, G. Two results on multiple Stratonovich integrals. Statistica Sinica. 7 (1997), 907-922
- Johnson, G. W., Kallianpur, G. Homogeneous chaos, p-forms, scaling and the Feynman integral. Trans. Amer. Math. Soc. 340 (1993), 503-548
- Rybakov, K. A. Orthogonal expansion of multiple Stratonovich stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2021, no. 4, 81-115 (In Russ. ) Available at: https://diffjournal.spbu.ru/EN/numbers/2021.4/article.1.5.html
- Sole, J. LL., Utzet, F. Stratonovich integral and trace. Stoch. : Int. J. Prob. Stoch. Proc., 29, 2 (1990), 203-220
- Bardina, X., Jolis, M. Weak convergence to the multiple Stratonovich integral. Stoch. Proc. Appl., Elsevier Publ., 90, 2 (2000), 277-300
- Bardina, X., Rovira, C. On the strong convergence of multiple ordinary integrals to multiple Stratonovich integrals. Publicacions Matematiques, 65 (2021), 859-876 DOI: http://doi.org/10.5565/PUBLMAT6522114
- Brislawn, C. Kernels of trace class operators. Proc. Amer. Math. Soc., 104, 4 (1988), 1181-1190
- Kuznetsov, D. F. Replacement the order of integration in iterated stochastic integrals with respect to martingale. Preprint. St. -Petersburg, St. -Petersburg St. Techn. Univ., SPbGTU Publ., 1999, 11 p. (In Russ. ) DOI: http://doi.org/10.13140/RG.2.2.19936.58889
- Arato, M. Linear stochastic systems with constant coefficients. A statistical approach. Berlin, Heidelberg, N. Y., Springer-Verlag Publ., 1982. 289 p
- Shiryaev, A. N. Essentials of stochastic finance: facts, models, theory. World Scientific Publ. Co United States, 1999. 852 p
- Chugai, K. N., Kosachev, I. M., Rybakov, K. A. Approximate filtering methods in continuous-time stochastic systems. Smart Innovation, Systems and Technologies, vol. 173, Eds. Jain L. C., Favorskaya M. N., Nikitin I. S., Reviznikov D. L. Springer Publ., 2020, pp. 351-371. DOI: https://doi.org/10.1007/978-981-15-2600-8_24
- Averina, T. A. Statisticheskoje modelirovanie reshenii stokhasticheskih differencial'nyh uravnenii i system so sluchainoi strukturoi [Statistical modeling of solutions of stochastic differential equations and systems with random structure]. Novosibirsk, Siberian Branch of the Russian Academy of Sciences Publ., 2019. 350 p
- Nasyrov, F. S. Lokal'nye vremena, simmetrichnyje integraly i stochasticheskiy analiz [Local times, symmetric integrals and stochastic analysis]. Moscow, Fizmatlit Publ 212 p
- Kagirova, G. R., Nasyrov, F. S. On an optimal filtration problem for one-dimensional diffusion processes. Siberian Adv. Math. 28, 3 (2018), 155-165
- Asadullin, E. M., Nasyrov, F. S. About filtering problem of diffusion processes. Ufa Math. J. 3, 2 (2011), 3-9
- Kloeden, P. E., Platen, E. The Stratonovich and Ito-Taylor expansions. Math. Nachr. 151 (1991), 33-50
- Platen, E., Wagner, W. On a Taylor formula for a class of Ito processes. Probab. Math. Statist. 3 (1982), 37-51
- Kulchitskiy, O. Yu., Kuznetsov, D. F. The unified Taylor-Ito expansion. J. Math. Sci. (N. Y. ). 99, 2 (2000), 1130-1140. DOI: http://doi.org/10.1007/BF02673635
- Kulchitskiy, O. Yu., Kuznetsov, D. F. Unified Taylor-Ito expansion. Differencialnie Uravnenia i Protsesy Upravlenia, 1997, no. 1, 1-17 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.1.html
- Kuznetsov, D. F. New representations of the Taylor-Stratonovich expansion. J. Math. Sci. (N. Y. ). 118, 6 (2003), 5586-5596. DOI: http://doi.org/10.1023/A:1026138522239
- Kulchitsky, O. Yu., Kuznetsov, D. F. Expansion of Ito processes into Taylor-Ito series at the neighborhood of the fixed time moment. VINITI, 2637-V93 (1993), 26 p. (In Russ. )
- Kuznetsov, D. F. Two new representations of the Taylor-Stratonovich expansion. Preprint. St. -Petersburg, St. -Petersburg St. Techn. Univ., SPbGTU Publ., 1999, 13 p. DOI: http://doi.org/10.13140/RG.2.2.18258.86729
- Wiener, N. Un problѐ me de probabilité s dé nombrables. Bull. Soc. Math. France. 52 (1924), 569-578
- Lé vy, P. Wiener's random function and other Laplacian random functions. Proc. 2nd Berkeley Symp. Math. Stat. Prob. 1951, 171-187
- Ito, K., McKean, H. Diffusion processes and their sample paths. Berlin, Heidelberg, New York, Springer-Verlag Publ., 1965. 395 p
- Neckel, T., Parra Hinojosa, A., Rupp, F. Path-wise algorithms for random and stochastic ODEs with applications to ground-motion-induced excitations of multi-storey buildings. Report number TUM-I1758. Munchen, TU Munchen, 2017, 33 p
- Kuznetsov, D. F, Combined method of strong approximation of multiple stochastic integrals. J. Automat. Inform. Sciences. 34, 8 (2002), 6 p. DOI: http://doi.org/10.1615/JAutomatInfScien.v34.i8.40
- Kuznetsov, D. F Weak numerical method of order 4. 0 for stochastic differential Ito equations. Vestnik Molodykh Uchenykh. Serya: Prikl. Mat. i Mekh. 4 (2000), 47-52. (In Russ. ) Available at: http://www.sde-kuznetsov.spb.ru/02b.pdf
- Gyö gy, I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9, 1 (1998), 1-25
- Gyö ngy, I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11, 1 (1999), 1-37
- Gyö ngy, I. and Krylov, N. An accelerated splitting-up method for parabolic equations. SIAM J. Math. Anal.. 37, 4 (2005), 1070-1097
- Hausenblas, E. Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comp. Appl. Math. 147, 2 (2002), 485-516
- Hausenblas, E. Approximation for semilinear stochastic evolution equations. Potential Anal. 18, 2 (2003), 141-186
- Jentzen, A. Pathwise numerical approximations of SPDEs with additive noise under non global Lipschitz coefficients. Potential Anal. 31, 4 (2009), 375-404
- Jentzen, A. Taylor expansions of solutions of stochastic partial differential equations. arXiv:0904. 2232 [math. NA]. 2009, 32 p. Available at: https://arxiv.org/abs/0904.2232
- Jentzen, A. and Kloeden, P. E. Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 465, Issue 2102 (2009), 649-667
- Jentzen, A. and Kloeden, P. E. Taylor expansions of solutions of stochastic partial differential equations with additive noise. Ann. Prob. 38, 2 (2010), 532-569
- Jentzen, A., Kloeden, P. E. Taylor Approximations for Stochastic Partial Differential Equations. Philadelphia, SIAM Publ., 2011. 224 p
- Jentzen, A. and Rö ckner, M. A Milstein scheme for SPDEs. Foundations Comp. Math. 15, 2 (2015), 313-362
- Becker, S., Jentzen, A. and Kloeden, P. E. An exponential Wagner-Platen type scheme for SPDEs. SIAM J. Numer. Anal. 54, 4 (2016), 2389-2426
- Zhang, Z., Karniadakis, G. Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer Publ., 2017. 398 p
- Jentzen, A. and Rö ckner, M. Regularity analysis of stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Differ. Eq. 252, 1 (2012), 114-136
- Lord, G. J. and Tambue, A. A modified semi-implict Euler-Maruyama scheme for finite element discretization of SPDEs. arXiv:1004. 1998 [math. NA]. 2010, 23 p. Available at: https://arxiv.org/abs/1004.1998
- Mishura, Y. S. and Shevchenko, G. M. Approximation schemes for stochastic differential equations in a Hilbert space. Theor. Prob. Appl. 51, 3 (2007), 442-458
- Müller-Gronbach, T., Ritter, K., Wagner, T. Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise. Monte Carlo and quasi-Monte Carlo methods 2006. Berlin, Springer Publ., 2007, 577-589
- Prevot, C., Rockner, M. A concise course on stochastic partial differential equations, vol. 1905 of Lecture Notes in Mathematics. Berlin, Springer Publ., 2007. 148 p
- Shardlow T. Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20, 1-2 (1999), 121-145
- Da Prato, G., Jentzen, A. and Rö ckner, M. A mild Ito formula for SPDEs. arXiv:1009. 3526[math. PR]. 2012, 39 p. Available at: https://arxiv.org/abs/1009.3526
- Da Prato, G. and Zabczyk, J. Stochastic equations in infinite dimensions. 2nd Ed. Cambridge, Cambridge University Press Publ., 2014. 493 p
- Kruse, R. Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34, 1 (2014), 217-251
- Kruse, R. Consistency and stability of a Milstein-Galerkin finite element scheme for semilinear SPDE. Stoch. PDE: Anal. Comp. 2, 4 (2014), 471-516
- Leonhard, C. Derivative-free numerical schemes for stochastic partial differential equations. Ph. D., Institute of Mathematics of the University of Lü beck, 2017. 131 p
- Leonhard, C., Rö ß ler, A. Iterated stochastic integrals in infinite dimensions: approximation and error estimates. Stoch. PDE: Anal. Comp. 7, 2 (2019), 209-239
- Bao, J., Reisinger, C., Renz, P., Stockinger, W. First order convergence of Milstein schemes for McKean equations and interacting particle systems. arXiv:2004. 03325v1 [math. PR], 2020, 27 pp. Available at: https://arxiv.org/abs/2004.03325
- Son, L. N., Tuan, A. H., Dung, T. N., Yin, G. Milstein-type procedures for numerical solutions of stochastic differential equations with Markovian switching. SIAM J. Numer. Anal. 55, 2 (2017), 953-979
- Sun, Y., Yang, J., Zhao, W. Ito-Taylor schemes for solving mean-field stochastic differential equations. Numer. Math. Theor. Meth. Appl. 10, 4 (2017), 798-828
- Rybakov, K. A. Spectral method of analysis and optimal estimation in linear stochastic systems. Int. J. Model. Simul. Sci. Comput. 11, 3 (2020), 2050022. DOI: https://doi.org/10.1142/S1793962320500221
- Rybakov, K. A. Modeling linear nonstationary stochastic systems by spectral method. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 3, 98-128 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/2020.3/article.1.5.html
- Averina, T. A., Rybakov, K. A. Using maximum cross section method for filtering jump-diffusion random processes. Russ. J. Numer. Anal. Math. Modelling. 35, 2 (2020), 55-67. DOI: http://doi.org/10.1515/rnam-2020-0005
- Rybakov, K. A. Modeling and analysis of output processes of linear continuous stochastic systems based on orthogonal expansions of random functions. J. Computer and Systems Sci. Int. , 59, 3 (2020), 322-337. DOI: http://doi.org/10.1134/S1064230720030156
- Kuznetsov, D. F. The three-step strong numerical methods of the orders of accuracy 1. 0 and 1. 5 for Ito stochastic differential equations. J. Autom. Inform. Sci. 34, 12 (2002), 14 p. DOI: http://doi.org/10.1615/JAutomatInfScien.v34.i12.30
- Kuznetsov, D. F. Finite-difference strong numerical methods of order 1. 5 and 2. 0 for stochastic differential Ito equations with nonadditive multidimensional noise. J. Autom. Inform. Sci. 33, 5-8 (2001), 13 p. DOI: http://doi.org/10.1615/JAutomatInfScien.v33.i5-8.180
- Kuznetsov, D. F. Expansion of the Stratonovich multiple stochastic integrals based on the Fourier multiple series. J. Math. Sci. (N. Y. ). 109, 6 (2002), 2148-2165. DOI: http://doi.org/10.1023/A:1014581416903
- Kuznetsov, D. F. Nekotorie voprosy teorii chislennogo resheniia stokhasticheskih differencial'nyh uravnenii. [Problems of the numerical analysis of Ito stochastic differential equations]. St. -Petersburg, SPbGTU Publ., 1998. 204 p
- Kuznetsov, D. F. A new approach to the series expansion of iterated Stratonovich Stochastic integrals of arbitrary multiplicity with respect to components of the Multidimensional Wiener process. [In Russian]. Abstracts of talks given at the 7th Int. Conf. on Stoch. (ICSM-7). Theor. Prob. Appl., 67, 4 (2022), 834-835 (In Russ. ) DOI: http://doi.org/10.4213/tvp5585
- Rybakov, K. A. Using spectral form of mathematical description to represent iterated Stratonovich stochastic integrals. Applied mathematics and computational mechanics for smart applications. Smart Innovation, Systems and Technologies, vol 217. Ed. Jain, L. C., Favorskaya, M. N., Nikitin, I. S., Reviznikov, D. L. Singapore, Springer Publ., 2021, pp. 287-304. DOI: http://doi.org/10.1007/978-981-33-4826-4_20
- Yang, G., Burrage, K., Komori, Y., Burrage, P., Ding, X. A class of new Magnus-type methods for semi-linear non-commutative Ito stochastic differential equations. Numer. Algor. (2021). DOI: http://doi.org/10.1007/s11075-021-01089-7
- Cao, W., Zhang, Z., Karniadakis, G. Numerical methods for stochastic delay differential equations via the Wong-Zakai approximation. SIAM J. Sci. Comput. 37, 1 (2015), A295-A318. DOI: http://doi.org/10.1137/130942024
- Schurz, H. Basic concepts of numerical analysis of stochastic differential equations explained by balanced implicit theta methods. Stochastic differential equations and processes. Springer Proceedings in Mathematics, vol. 7. Ed. Zili, M., Filatova, D. Berlin, Heidelberg, Springer Publ., 2012, pp. 1-139. DOI: http://doi.org/10.1007/978-3-642-22368-6_1
- Mishura, Y. S., Shvai, A. V. An estimate of the rate of convergence of an approximating scheme applied to a stochastic differential equation with an additional parameter. Theor. Prob. Math. Stat. 82 (2011), 75-85. DOI: http://doi.org/10.1090/S0094-9000-2011-00828-9
- Gaines, J. G. A basis for iterated stochastic integrals. Math. and Computers in Simul. 38 (1995), 7-11
- Foster, J., Habermann, K. Brownian bridge expansions for Lé vy area approximations and particular values of the Riemann zeta function. Combin. Prob. Comp. (2022), 1-28 DOI: http://doi.org/10.1017/S096354832200030X
- Kastner, F., Rö ß ler, A. An analysis of approximation algorithms for iterated stochastic integrals and a Julia and MATLAB simulation toolbox. arXiv:2201. 08424 [math. NA], 2022, 43 p
- Malham, S. J. A., Wiese A. Efficient almost-exact Lé vy area sampling. Stat. Prob. Letters, 88 (2014), 50-55
- Stump, D. M., Hill J. M. On an infinite integral arising in the numerical integration of stochastic differential equations. Proc. Royal Soc. of London. Series A. Math., Phys. Eng. Sci., 461, 2054 (2005), 397-413
- Rybakov, K. A. Features of the expansion of multiple stochastic Stratonovich integrals using Walsh and Haar functions. Differencialnie Uravnenia i Protsesy Upravlenia, 2023, no. 1, 137-150 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/collection.html
- Kamrani, M., Jamshidi, N. Implicit Milstein method for stochastic differential equations via the Wong-Zakai approximation. Numerical Algorithms, 79 (2018), 357-374
- Fihtengolc, G. M. Kurs differencial’nogo i integral’nogo schislenija. T. 2 [Differential and integral calculus course. Vol II]. Moscow, Fizmatlit, 1970, 800 p